# Chapitre 11 : Prise en charge d'un blessé cranio-encéphalique

Réflexions pour une prise en charge en rôle 1

Pour approfondir la neuro-réanimation



# Données de base

### Lésions crânio-encéphaliques : *Environ 15% des blessés*

Table 1-2. Anatomical Distribution of Primary Penetrating Wounds

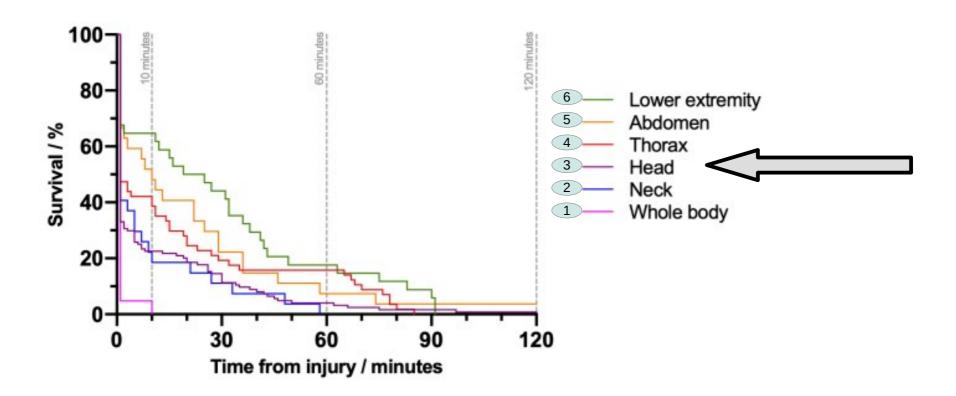
| Conflict                      | Head/Neck/Face<br>(%) | Thorax (%) | Abdomen<br>(%) | Extremity (%) | Polytrauma<br>(%) | Other<br>(%) |
|-------------------------------|-----------------------|------------|----------------|---------------|-------------------|--------------|
| World War I                   | 17                    | 4          | 2              | 70            | NR                | 7            |
| World War II                  | 4                     | 8          | 4              | 75            | NR                | 9            |
| Korean War                    | 17                    | 7          | 7              | 67            | NR                | 2            |
| Vietnam War                   | 14                    | 7          | 5              | 74            | NR                | _            |
| Northern Ireland              | 20                    | 15         | 15             | 50            | NR                | _            |
| Falkland Islands              | 16                    | 15         | 10             | 59            | NR                | _            |
| Gulf War (UK)                 | 6                     | 12         | 11             | 71            | NR                | -            |
| Gulf War (US)                 | 11                    | 8          | 7              | 56            | NR                | 18           |
| Chechnya                      | 24                    | 9          | 4              | 63            | NR                | _            |
| Somalia                       | 20                    | 8          | 5              | 65            | NR                | 2            |
| Military operations 2007–2017 | 8.3                   | 0.6        | 0.7            | 5.4           | 69.6              | 15.4         |

Data source for recent military operations: Department of Defense Trauma Registry.



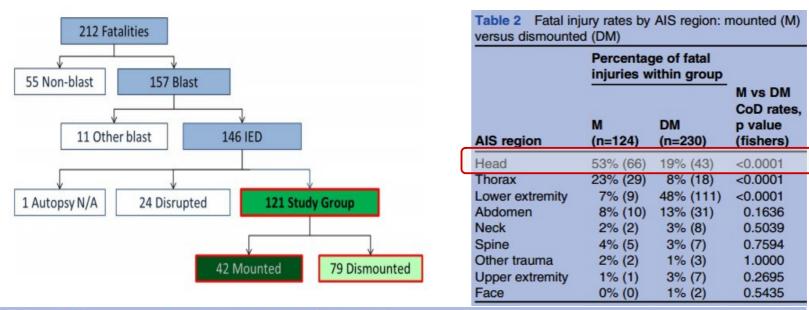
Et actuellement le + souvent c'est un polytraumatisé

### Une cause majeure de décès immédiat mais AUSSI secondaire


TABLE 1. Injury Focus of Patient With NS Injuries Who Died Instantaneously or Acutely Before Admission at a MTF (pre-MTF)

| Cause of Death          | Instantaneous (n = 1,619) | Acute (n = 1,624)<br>53.0% (753) |  |
|-------------------------|---------------------------|----------------------------------|--|
| Brain injury            | 38.3% (620)               |                                  |  |
| High spinal cord injury | 7 <del></del>             | 9.2% (131)                       |  |
| Dismemberment           | 31.6% (512)               | \$ <del></del> 8                 |  |
| Heart/thoracic injury   | 23.6% (383)               | 21.8% (310)                      |  |
| Open pelvic injury      |                           | 6.5% (93)                        |  |
| Other                   | 6.5% (104)                | 9.5% (134)                       |  |

Values are percentages of the total deaths and the number of deaths.


Et pour ceux qui survivent : Des séquelles

### Des blessés qui meurent beaucoup dans les 30 premières minutes



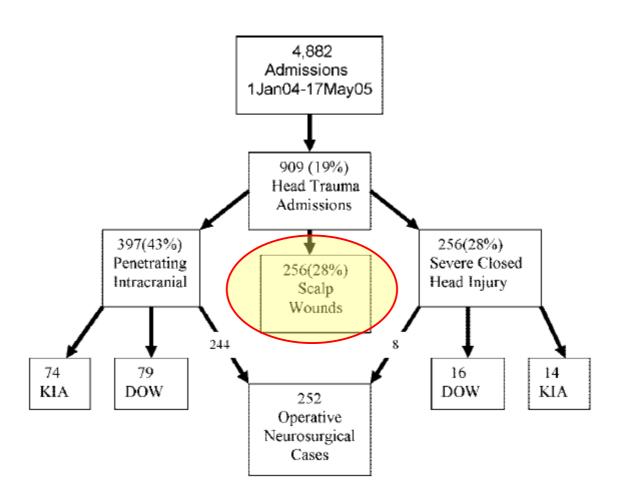
Le bon geste, sur le bon blessé, par le bon intervenant, au bon moment pour sauver la vie

### Encore près d'1/3 des morts, y compris si combat embarqué



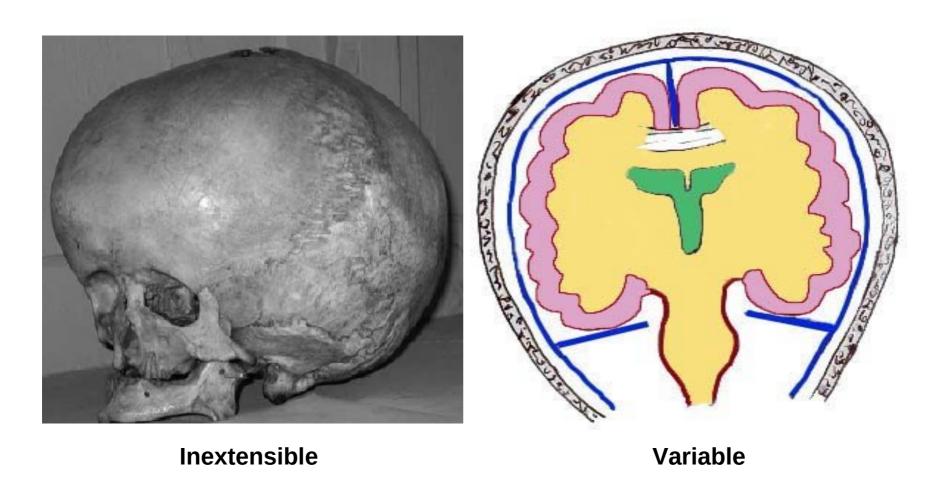
| Group variable                            |    | Mounted<br>(n=42) | Dismounted (n=79) | Overall<br>(n=121) | M vs DM, p<br>value |
|-------------------------------------------|----|-------------------|-------------------|--------------------|---------------------|
| Age in years                              |    | 25.5 (22-30)*     | 25.0 (21-29)*     | 25 (21-29)*        | 0.345               |
| ToW—ToD in mins                           |    | 78 (36-113)*      | 85 (58-196)*      | 81 (50-145)*       | 0.110               |
| ToD—ToS in mins                           |    | 246 (160-714)*    | 216 (89-900)*     | 232 (105-712)*     | 0.234               |
| KIA (%)                                   |    | 38 (90)           | 70 (89)           | 108                | 1.000               |
| DOW (%)                                   |    | 4 (10)            | 9 (11)            | 13                 | 1.000               |
| Number of AIS regions with fatal injuries | 1  | 16 (38)           | 35 (44)           | 51                 | 0.492               |
| (%)                                       | 2  | 22 (52)           | 38 (48)           | 60                 |                     |
|                                           | ≥3 | 4 (10)            | 6 (8)             | 10                 |                     |

#### Certains décès sont évitables


**Table 4** Causes of Death Among Potentially Survivable Casualties

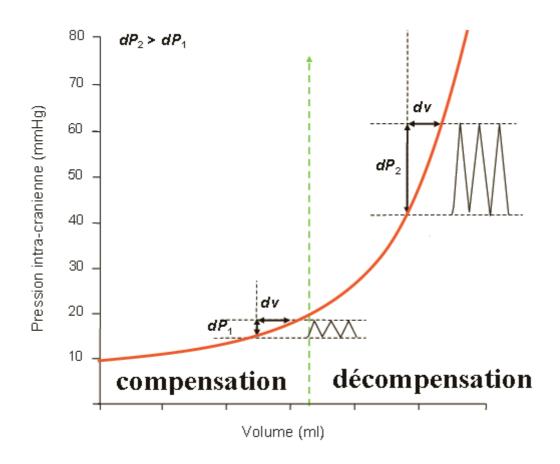
| Cause of Death*                      | Group 1 (n = 93)<br>(% Total of PS) | Group 2 (n = 139)<br>(% Total of PS) |
|--------------------------------------|-------------------------------------|--------------------------------------|
| CNS                                  | 12 (13)                             | 8 (6)                                |
| Head                                 | 11 (12)                             | 6(4)(p < 0.04)                       |
| Neck                                 | 1 (1)                               | 0 (0)                                |
| Spinal cord                          | 1 (1)                               | 3 (2)                                |
| Hemorrhage                           | 81 (87)                             | 116 (83)                             |
| Tourniquetable (ext)                 | 31 (33)                             | 46 (33)                              |
| Noncompressible (torso)              | 47 (51)                             | 68 (49)                              |
| Nontourniquetable<br>(ax/neck/groin) | 19 (20)                             | 29 (21)                              |
| Airway                               | 14 (15)                             | 14 (10)                              |
| Sepsis/MSOF                          | 2 (2)                               | 9 (6)                                |
| Total causes of death identified     | 219                                 | 299                                  |

<sup>\*</sup> Casualties could have 1 or more cause of death. MSOF indicates multisystem organ failure.


Le crâne : 7 % des décès évitables ?

Lésions crânio-encéphaliques : Une constante dans tous les conflits



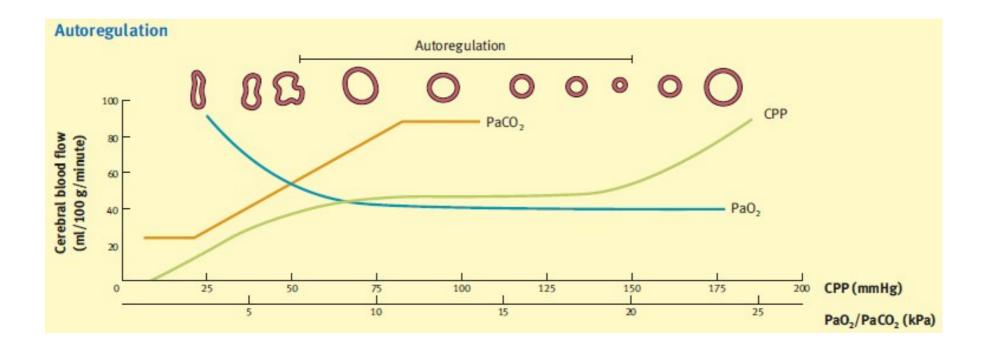

L'atteinte de l'extrémité céphalique : *le cerveau, le crâne ET le SCalp* 

### Lésions crânio-encéphaliques: Un contenant inextensible / Un contenu variable



Vol. crâne = vol. du cerveau (85%) + vol. du LCR (5%) + vol. sanguin (10%)= = 1500 ml

#### Lésions crânio-encéphaliques: Un contenant inextensible / Un contenu variable

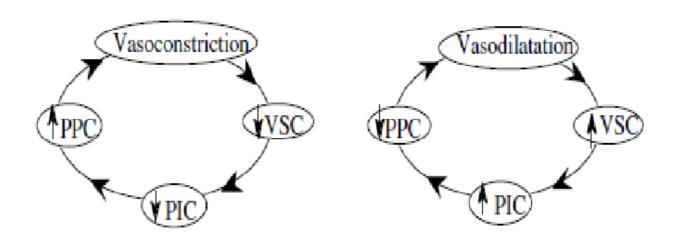



Toute augmentation de volume est compensée, jusqu'à un certain point

### Hypertension intracrânienne

Notions d'hémodynamique cérébrale

Une circulation auto-régulée : Un débit cérébral constant pour une plage de PPC

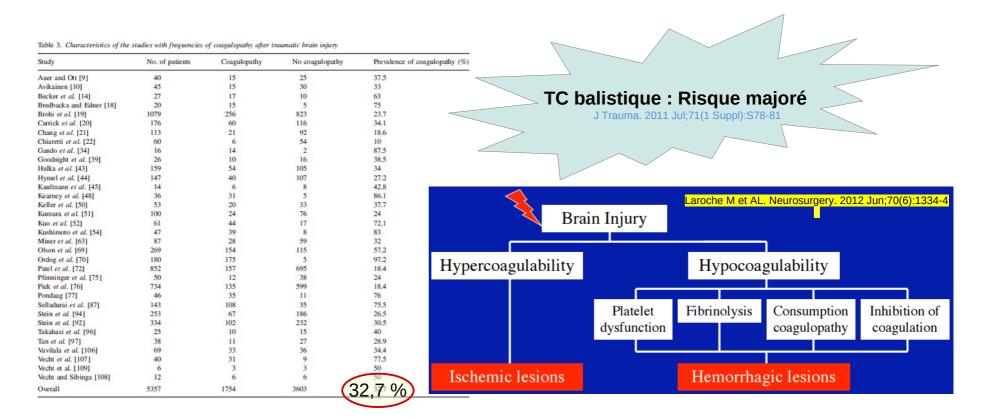



Pression de perfusion cérébrale = PAM – PIC ≈ 80 mmHg

VO2 : 3,3 ml/100g/min - 20% de l'oxygène consommé
DSC = 45 à 55 ml/100g/min - 15% Débit cardiaque - 2% du poids corporel

Notions d'hémodynamique cérébrale

Une circulation auto-régulée : Un débit cérébral constant pour une plage de PPC




Rôle +++ de la régulation du volume sanguin cérébral

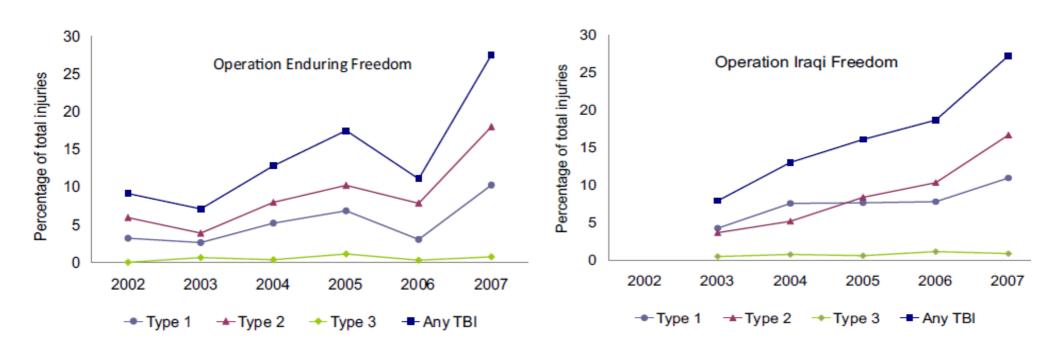
Toujours privilégier le maintien d'une pression artérielle optimale

### Lésions crânio-encéphaliques : Responsable de coagulopathie

#### En moyenne 1 fois sur 3



Présence associée à mortalité accrue et pronostic aggravé par saignement intracrânien persistant


A meta-analysis to determine the effect of coagulopathy on intracranial haematoma progression in adult patients with isolated blunt head trauma. Batchelor JS. Trauma 2015, Vol. 17(4) 243–249

Lésions crânio-encéphaliques : Une éventualité fréquente ?

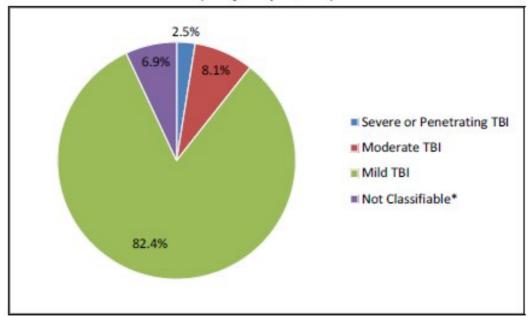
| Injury status Injured with TBI Injured without TBI Not injured Total Screened Injury characteristics for those with TBI† Dazed or confused only Had loss of consciousness or could not remember the injury Total with TBI | 907 (22.8)<br>385 (9.7)<br>2681 (67.5)<br>3973 (100)<br>572 (63.1)<br>335 (36.9)<br>907 (100) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| • •                                                                                                                                                                                                                       | 907 (100)                                                                                     |  |

Dépend du conflit : ex Afghanistan, 1 combattant sur 5 ?

Lésions crânio-encéphaliques : Une éventualité de + en + fréquente ?



Qui peut passer inaperçue : Pas forcément grave et pas forcément ouvert !




Un enjeu majeur : Les séquelles des trauma modérés surtout si répétés

### Lésions crânio-encéphaliques : Une éventualité fréquente ?

Figure 2. Traumatic Brain Injury (TBI) 2000-2013 Q3 by Classification, Deployed and Not Previously Deployed Combined

(as of January 10, 2014)



Source: CRS communication with Dr. Michael Carino, Army Office of the Surgeon General, January 10, 2014. Data source is Defense Medical Surveillance System (DMSS), Defense and Veterans Brain Injury Center, http://www.dvbic.org/dod-worldwide-numbers-tbi.

Note: "Not Classifiable" indicates additional incident information is required prior to TBI categorization.

Qui peut passer inaperçue : Pas forcément grave et pas forcément ouvert !

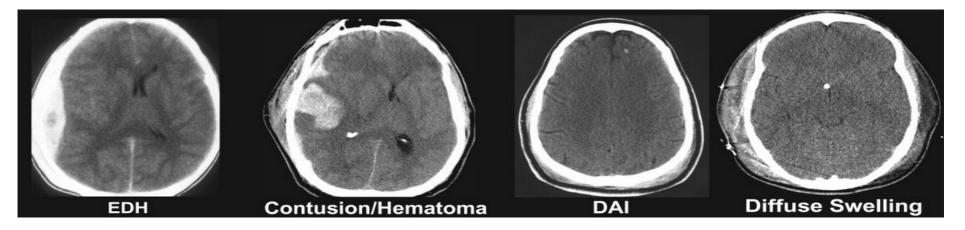


Un enjeu majeur : Les séquelles des trauma modérés surtout si répétés

### Lésions crânio-encéphaliques : On peut passer à côté ?

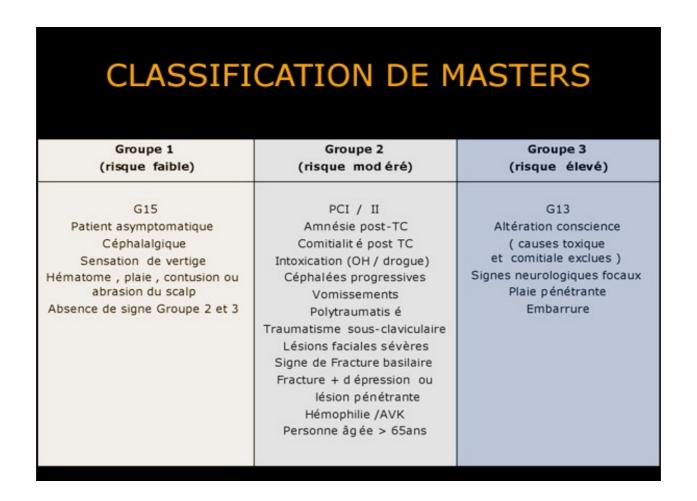
Overall Rates of Probable PTSD, Major Depression, and TBI with Co-Morbidity (N=1,965)

| Condition                 | Weighted<br>Percentage | 95% CI LL | 95% CI UL | Population<br>LL | Populatior<br>UL |
|---------------------------|------------------------|-----------|-----------|------------------|------------------|
| Probable PTSD             | 13.8                   | 11.1      | 16.5      | 181,000          | 270,000          |
| Probable major depression | 13.7                   | 11.0      | 16.4      | 181,000          | 270,000          |
| Probable TBI              | 19.5                   | 16.4      | 22.7      | 269,000          | 372,000          |
| Co-morbidity              |                        |           |           |                  |                  |
| No condition              | 69.3                   | 65.7      | 73.0      | 1,079,000        | 1,198,000        |
| PTSD only                 | 3.6                    | 2.0       | 5.2       | 32,000           | 86,000           |
| Depression only           | 4.0                    | 2.4       | 5.5       | 40,000           | 91,000           |
| TBI only                  | 12.2                   | 9.6       | 14.8      | 157,000          | 243,000          |
| PTSD and depression       | 3.6                    | 2.3       | 4.8       | 38,000           | 79,000           |
| PTSD and TBI              | 1.1                    | 0.6       | 1.7       | 10,000           | 27,000           |
| TBI and depression        | 0.7                    | 0.1       | 1.4       | 1,000            | 22,000           |
| PTSD, depression, and TBI | 5.5                    | 3.6       | 7.4       | 58,000           | 121,000          |


NOTES: Based on 1.64 million individuals deployed to OEF/OIF, assuming that the rate found in the sample is representative of the population. CI = confidence interval; LL = lower limit; UL = upper limit.

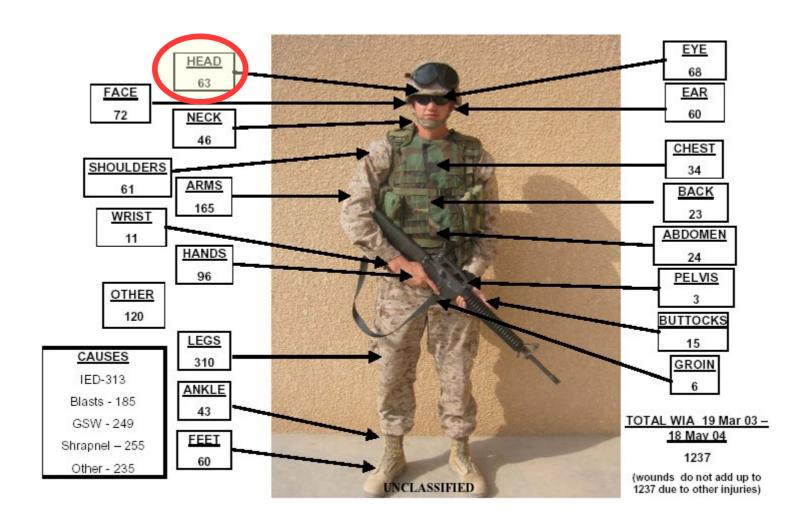
### Lien avec le PTSD ?, troubles du sommeil, désordres neuro-sensoriels infra-cliniques

Lésions crânio-encéphaliques : **Nécessité d'une classification clinique** 


| Severity Grades of TBI                          |                                            |                                            |
|-------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Mild (Grade 1)                                  | Moderate (Grade 2)                         | Severe (Grade 3 & 4)                       |
| Altered or LOC < 30 min with normal CT &/or MRI | LOC < 6 hours with<br>abnormal CT &/or MRI | LOC > 6 hours with<br>abnormal CT &/or MRI |
| GCS 13-15                                       | GCS 9-12                                   | GCS < 9                                    |
| PTA < 24 hours                                  | PTA < 7 days                               | PTA > 7 days                               |

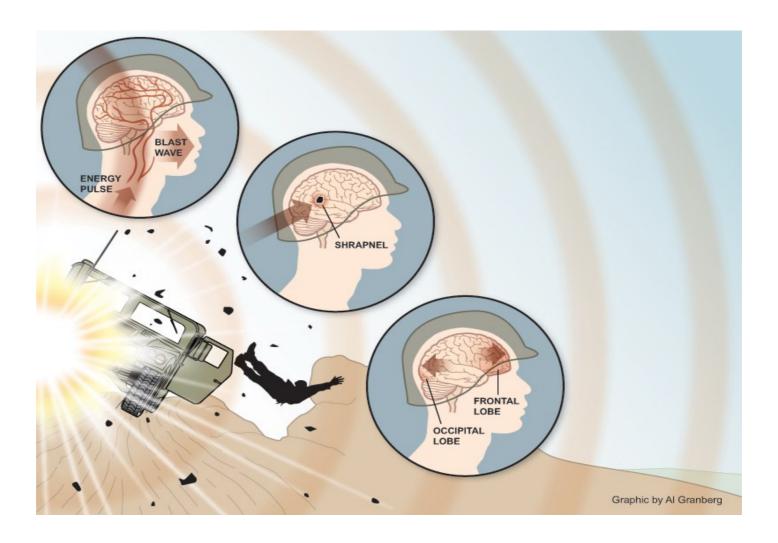
United States, Traumatic brain injury: independent study course (Veterans health initiative, 2003).




Derrière cette classification : Une très grande variété de lésions anatomiques

Lésions crânio-encéphaliques : Une éventualité fréquente ?




Pas tous graves: 3 niveaux

### Une région anatomique *exposée*



Mais aussi une région relativement protégée

## Éléments de balistique

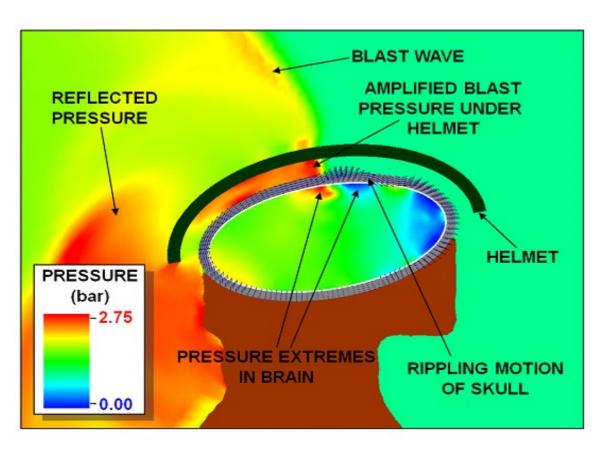


Bien sur les traumatismes ouverts mais AUSSI fermés notamment par explosion

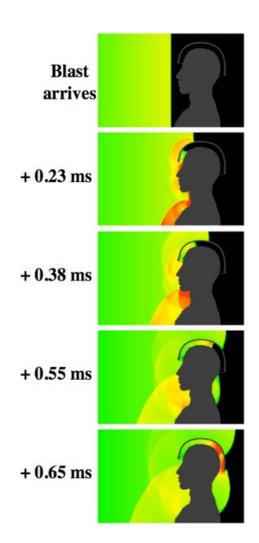
### Éléments de balistique

Table 3. Direct mechanism of injury for TBI hospitalizations a matched to JTTR records

| Location/direct | TBI <sup>b</sup> |         |        |         |        |         |      |         |
|-----------------|------------------|---------|--------|---------|--------|---------|------|---------|
| mechanism       | Type 1           |         | Type 2 |         | Type 3 |         | Any  |         |
|                 | n                | (%)     | n      | (%)     | n      | (%)     | n    | (%)     |
| Afghanistan     |                  |         |        |         |        |         |      |         |
| Explosion       | 23               | (65.7)  | 19     | (34.5)  | 1      | (25.0)  | 42   | (46.7)  |
| Blunt           | 4                | (11.4)  | 21     | (38.2)  | 1      | (25.0)  | 24   | (26.7)  |
| Penetrating     | 4                | (11.4)  | 5      | (9.1)   | 1      | (25.0)  | 10   | (11.1)  |
| Other           | 4                | (11.4)  | 10     | (18.2)  | 1      | (25.0)  | 14   | (15.6)  |
|                 | 35               | (100.0) | 55     | (100.0) | 4      | (100.0) | 90   | (100.0) |
| Iraq            |                  |         |        |         |        |         |      |         |
| Explosion       | 478              | (67.8)  | 334    | (58.1)  | 56     | (64.4)  | 829  | (63.9)  |
| Blunt           | 94               | (13.3)  | 154    | (26.8)  | 21     | (24.1)  | 248  | (19.1)  |
| Penetrating     | 116              | (16.5)  | 22     | (3.8)   | 9      | (10.3)  | 143  | (11.0)  |
| Burn            | 1                | (0.1)   | 1      | (0.2)   | 0      | (0.0)   | 1    | (0.1)   |
| Other           | 16               | (2.3)   | 64     | (11.1)  | 1      | (1.1)   | 77   | (5.9)   |
|                 | 705              | (100.0) | 575    | (100.0) | 87     | (100.0) | 1298 | (100.0) |


<sup>&</sup>lt;sup>a</sup>During deployment, for U.S. Army soldiers deployed between September 11, 2001, and September 30, 2007. <sup>b</sup>Type 1 TBI (most severe), Type 2, and Type 3 (least severe) refer to Barell Injury Matrix categories. <sup>15</sup>

JTTR, Joint Theater Trauma Registry; TBI, traumatic brain injury

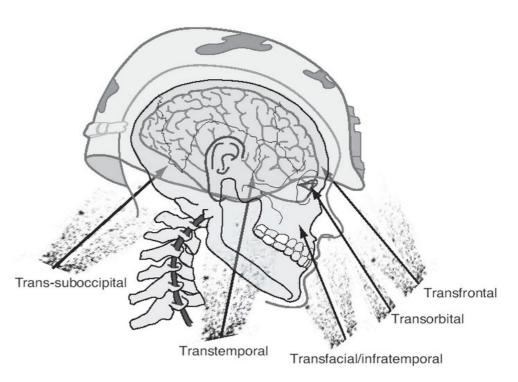

Des traumatismes ouverts mais AUSSI surtout fermés notamment par explosion

### Éléments de balistique

#### **Blast**



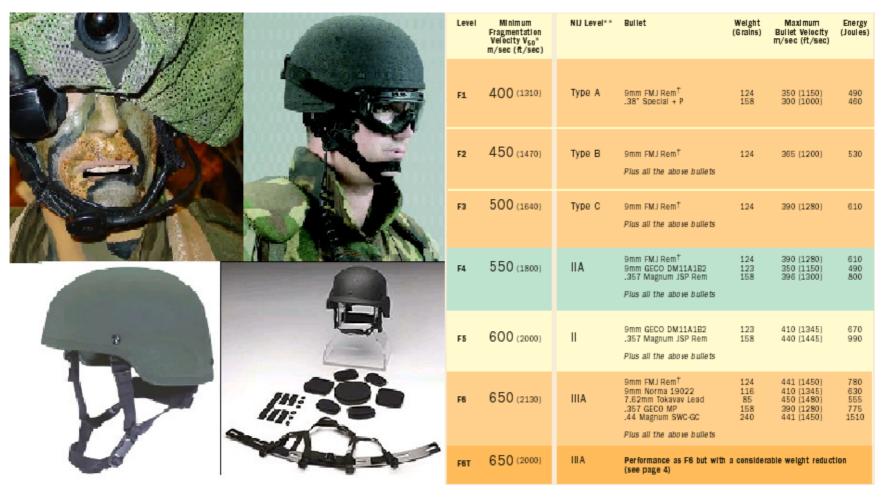
Onde de pression: Diffuse à l'intérieur de la boite crânienne




## Éléments de balistique

#### Balles et éclats :




#### Régions occipitale et temporale



50% des impacts sur 15% de la surface de la boite crânienne

### Éléments de balistique

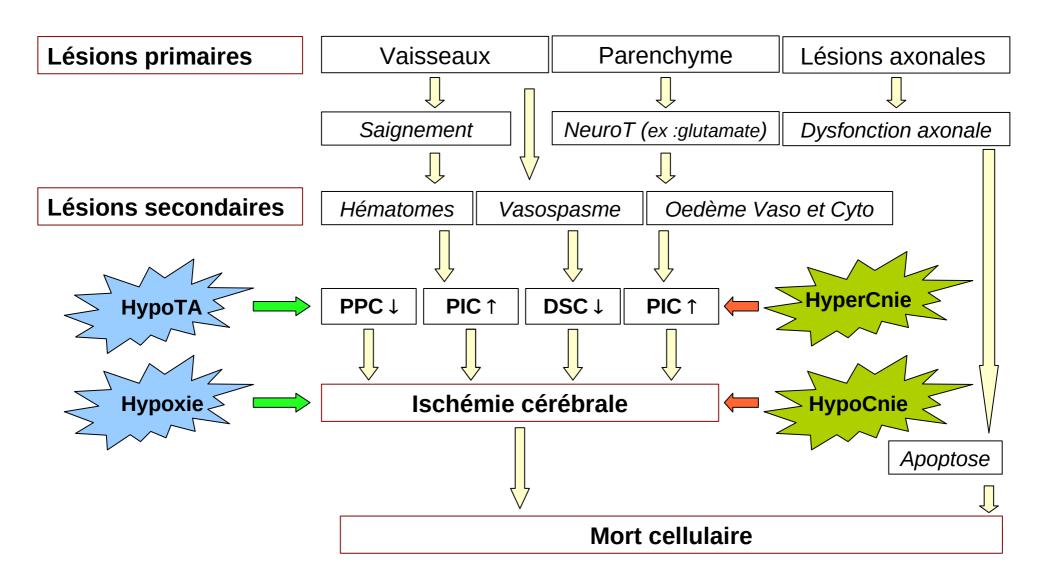
### Donc une protection adaptée à la menace



V50 – Stanag 2920 – 680 m/s pour le casque Spectra

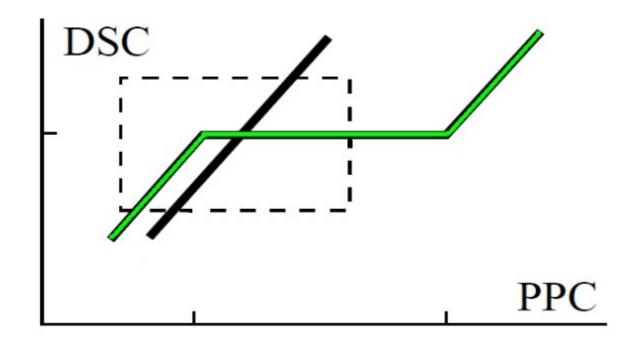
## Éléments de balistique

### Donc une protection adaptée à la menace




Elle ne se modifie pas

# Éléments de balistique

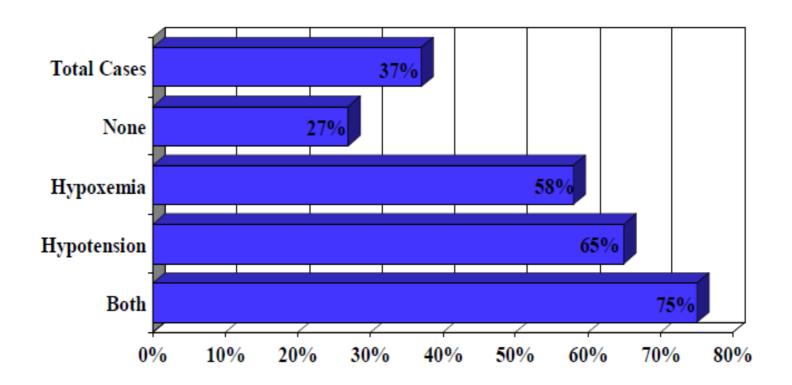

### Balles et éclats





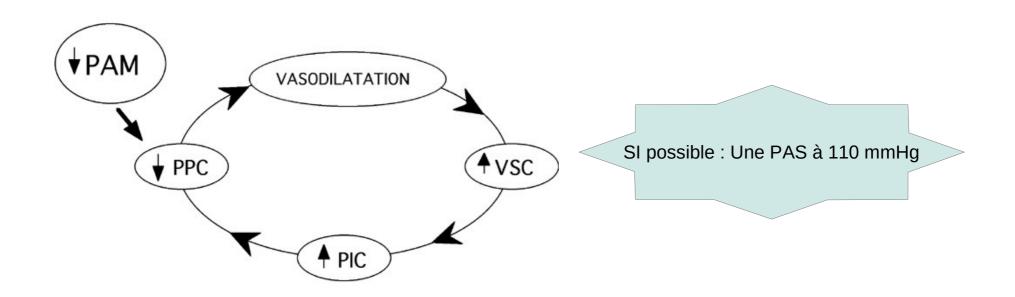
Notions d'hémodynamique cérébrale

Une autorégulation altérée en cas de traumatisme crânien




Une relation linéaire dangereuse si la PPC (Perfusion cérébrale) est trop basse

Seuil d'ischémie : 22 ml/100g/min


Une situation d'ischémie cérébrale dans au moins 1 TC sur 3

Agression Cérébrales Systémiques d'Origine Secondaire (ACSOS)



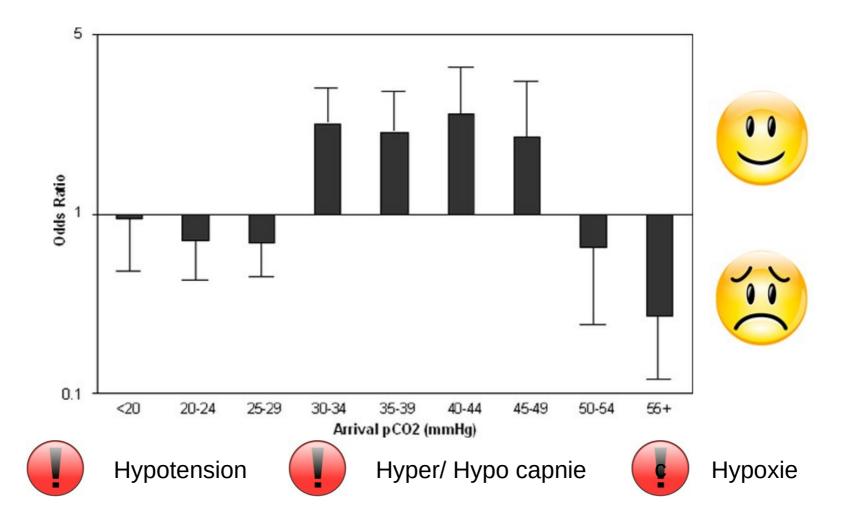
Une association Hypotension-Hypoxie à **PROHIBER**Des mesures simples sont efficaces

**ACSOS**: Pour les prévenir, PAS D'HYPOTENSION



Un seul épisode de PA < 90 mmHg pendant + de 5 min ⇒ Mortalité X 2,5




Hypotension



Hyper/ Hypo capnie



**ACSOS** : Une capnie maîtrisée ?



**ACSOS**: Pas d'hypercapnie mais aussi pas d'hypocapnie

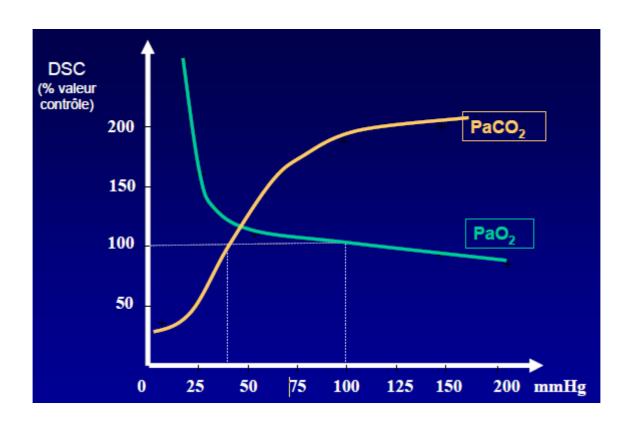
| Tal | ы | 0 '  | 0 4        |
|-----|---|------|------------|
| Tal | Ш | IG 4 | 4 Outcomes |

| All Dationto (N. 400)          |            | Arrival Pco <sub>2</sub>      |             |                    |         |  |  |
|--------------------------------|------------|-------------------------------|-------------|--------------------|---------|--|--|
| All Patients (N = 492)         | Hypocapnia | Hypocapnia Target Ventilation |             | Severe Hypercapnia | p Value |  |  |
| Pco <sub>2</sub> range (mm Hg) | <30        | 30–35                         | 36–45       | >45                |         |  |  |
| n                              | 80 (16.3%) | 155 (31.5%)                   | 188 (38.2%) | 69 (14.0%)         |         |  |  |
| Mortality                      | 20 (25.0%) | 25 (16.1%)                    | 50 (26.6%)  | 25 (36.2%)         | 0.009   |  |  |
| Mean discharge GCS (SD)        | 14.2 (2.4) | 14.4 (1.9)                    | 14.7 (1.1)  | 14.3 (1.9)         | 0.31    |  |  |
| Discharge GCS <15              | 7 (13.5%)  | 13 (13.4%)                    | 10 (9.1)    | 6 (16.2%)          | 0.62    |  |  |
| Mean FIM score (SD)            | 9.96 (2.6) | 10.2 (2.5)                    | 10.3 (2.1)  | 9.43 (2.9)         | 0.29    |  |  |
| Mean ICU days (SD)             | 5.42 (6.4) | 5.59 (9.3)                    | 5.92 (11.3) | 8.97 (10.5)        | 0.31    |  |  |

Discharge outcomes for survivors only.

GCS, Glasgow Coma Score; FIM, Functional Independence Measure; ICU, intensive care unit.




Hypotension



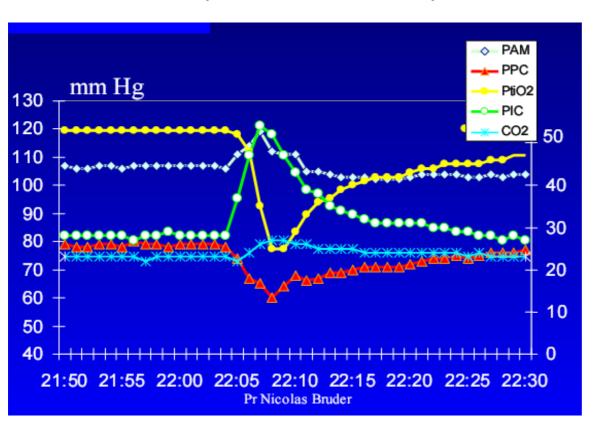
Hyper/ Hypo capnie

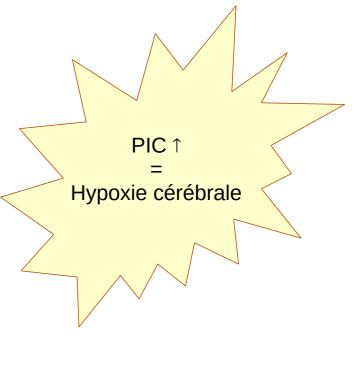


**ACSOS**: Pour les prévenir, pas d'hypoxie < 60 mmHg






Hypotension




Hyper/ Hypo capnie

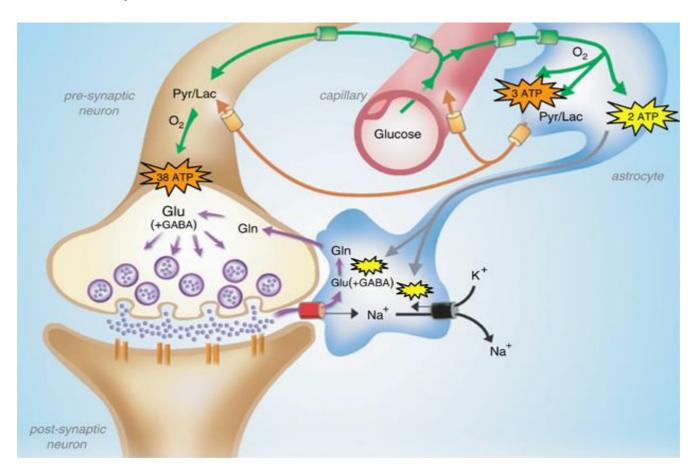


ACSOS: Pour les prévenir, maîtriser la pression intracrânienne








Hypotension



Hyper/ Hypo capnie



ACSOS: Pour les prévenir, maîtriser le métabolisme cérébral



L'apport de glucose est essentiel à l'apport énergétique cérébral Couplage métabolisme / Débit sanguin cérébral

v 2026

Lésions crânio-encéphaliques : Notions de lésions primaires et secondaires

**ACSOS** : Pour les prévenir, maîtriser le métabolisme cérébral

|     | nin/100 g)      |   | BIOCHIMIE            | FONCTION       | STRUCTURE |
|-----|-----------------|---|----------------------|----------------|-----------|
|     | <b>50</b><br>40 | Ä | Synthèse protéique   |                |           |
|     | 30              |   |                      | Altération EEG |           |
|     | 30              | 7 | Glutamate et lactate | Ondes lentes   |           |
|     | 20              |   |                      | EEG plat       |           |
|     | 10              |   | <b>¥</b> ATP         |                | Infarctus |
| ↓ ( | DSC             |   | <b>7</b> K+ et Ca 2+ |                |           |

Température Hémoglobine Osmolarité Glucose Glutamate

# Que faire?



RPP : Prise en charge des patients présentant un traumatisme crânien léger de l'adulte



RFE : Prise en charge des traumatisés crâniens graves à la phase précoce (24 premières heures)



Traumatic Brain Injury Management in Prolonged Field Care

Sauver la vie!

# Que faites vous en premier ?



**SAFE** 

#### Penser SAFE et Evaluer pour ABC



Airway Bleeding - Bandage Conscience : AVPU

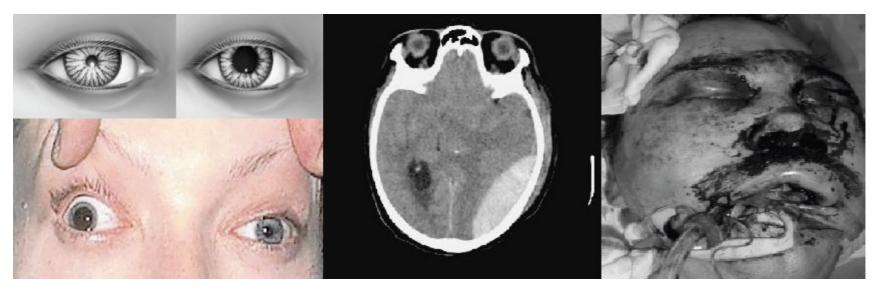
**A :** Alerte ? **V** : Voix ? **P** : Pincement ? **U** : Unresponsive = sans réaction

Le niveau de conscience : Score de Glasgow ?

Grave si <8

| )uverture des yeux        |          |
|---------------------------|----------|
| Spontanée                 | 4 points |
| A la parole               | 3 points |
| A la douleur              | 2 points |
| Aucune                    | 1 point  |
| Réponse verbale           |          |
| Orientée                  | 5 points |
| Confuse                   | 4 points |
| Inappropriée              | 3 points |
| Incompréhensible          | 2 points |
| Aucune                    | 1 point  |
| Meilleure réponse motrice |          |
| Obéit aux ordres          | 6 points |
| Localise la douleur       | 5 points |
| Retrait à la douleur      | 4 points |
| Flexion anormale          | 3 points |
| Extension à la douleur    | 2 points |
| Aucune                    | 1 point  |

Tableau 1. Score de Glasgow, évaluant la sévérité des troubles de la conscience.


**Table 2.**Measures of interrater reliability between paired ratings.

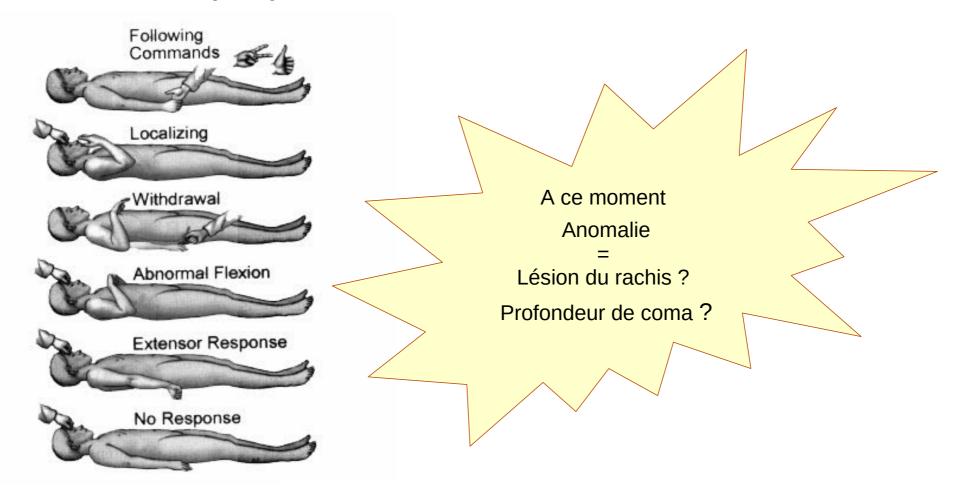
| Measure                       | Eye           | Verbal*       | Motor         | Total           |
|-------------------------------|---------------|---------------|---------------|-----------------|
| Agreement, %                  | 74            | 55            | 72            | 32 <sup>†</sup> |
| Kendall's τ-b‡                | 0.715         | 0.587         | 0.742         | 0.739           |
| Spearman's ρ <sup>‡</sup>     | 0.757         | 0.665         | 0.808         | 0.864           |
| (95% Cls)                     | (0.612-0.851) | (0.519-0.765) | (0.700-0.877) | (0.804 - 0.904) |
| Spearman's ρ <sup>2,5</sup> % | 57            | 44            | 65            | 75              |
| κ, unweighted                 | 0.59          | 0.37          | 0.58          | 0.00            |
| κ, weighted¹                  | 0.72          | 0.48          | 0.63          | 0.40            |

Le CGS est souvent MAL évalué

**A :** Alerte ? **V** : Voix ? **P** : Pincement ? **U** : Unresponsive = sans réaction

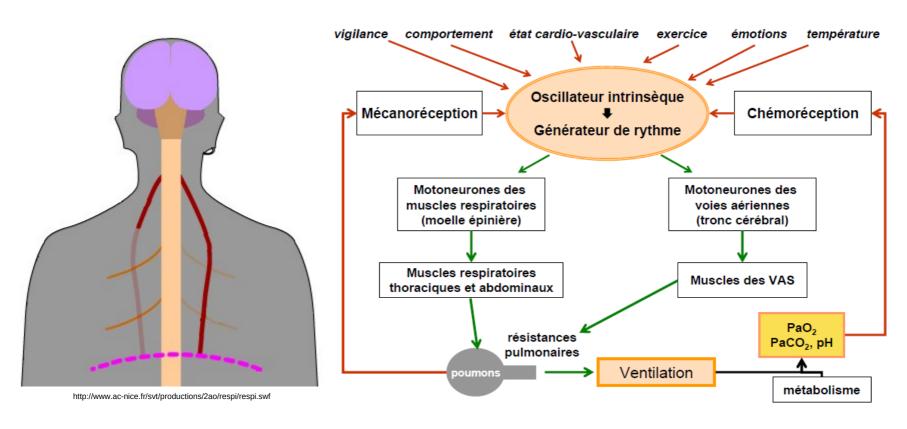
Rechercher une anisocorie et apprécier le réflexe photomoteur :




Tenir compte de la luminosité

= HTIC Engagement temporal

Pas si simple Oedème


Dans un contexte traumatique pensez à l'hématome extra-dural

#### Rechercher une paralysie ou une anomalie de réaction motrice



**Simplement**: Bouge les bras? Bouge les jambes? Ne bouge pas?

#### Rechercher une hypoventilation par altération de la commande respiratoire

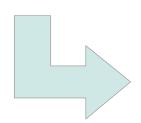


Ampliation thoracique? Fréquence respiratoire? Rythme?



Examiner le crâne : Suture ++++?, dès que possible gros point



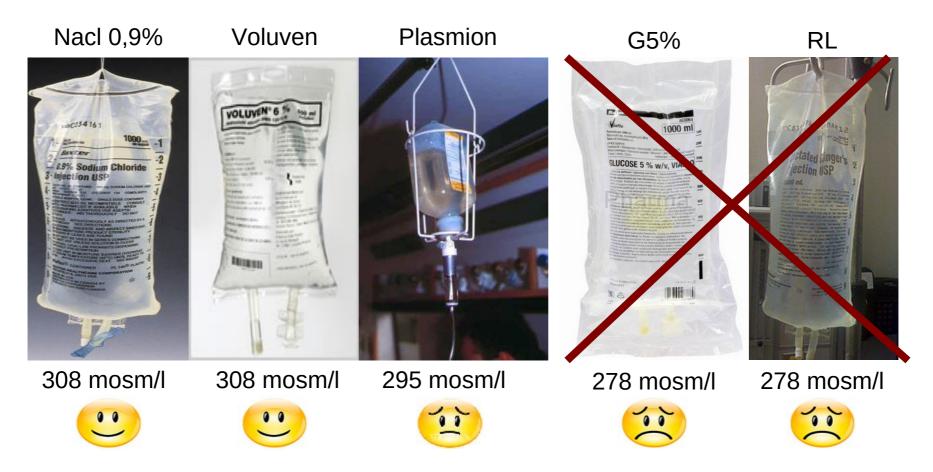



Avant Role 1 : Plutôt Quikclot et pansement « un peu » compressif, suture dès que possible

Derrière une plaie du scalp par balle ou éclat : Probable plaie cranio-cérébrale

# Tout faire pour réduire les ACSOS

Mettre en œuvre
le mieux possible compte tenu du contexte
les <u>recommandations pour la pratique clinique de la SFAR</u>

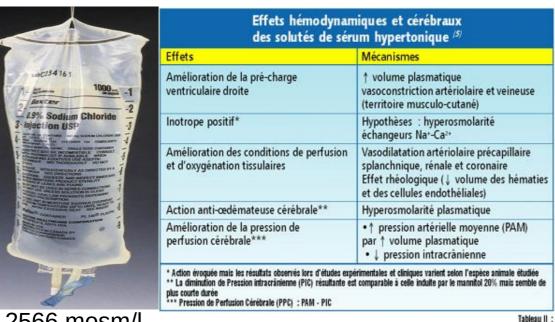


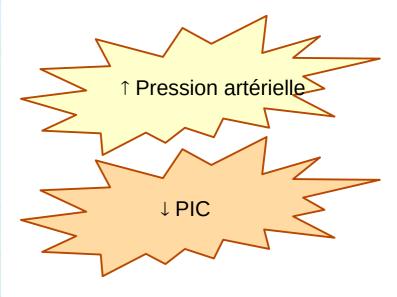

Importance de la spécialisation de la prise en charge et MEDEVAC

J R Army Med Corps. 2017 Oct;163(5):342-346

Avoir une PAS **au minimum** > 90 mmHg; *idéalement 110 mmHg* 

Par un remplissage vasculaire prohibant les solutés hyptoniques





Osmolarité < 300 mosm/l ⇒ Oedème cérébral ⇒ HTIC

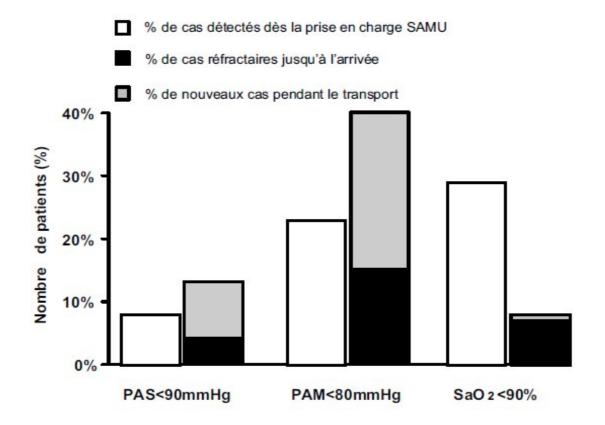
Avoir une PAS **au minimum** > 90 mmHg; *idéalement 110 mmHg* 

Par un remplissage vasculaire avec des solutés hypertoniques

Nacl 7.5%










NaCl 7.5% 250 ml en 20 minutes

Discutable en contexte civil, mais adapté au contexte militaire

Avoir une PAS **au minimum** > 90 mmHg; *idéalement 110 mmHg* En se donnant les moyens de contrôler l'hémodynamique



Problème : La perception d'un pouls radial est insuffisante

Avoir une PAS **au minimum** > 90 mmHg; *idéalement 110 mmHg* 

En ayant recours à des vasopresseurs : Adrénaline



|                                      | Récej     | oteurs 🏿 | Récepteurs | ; B1   | Récepteurs 62 |  |
|--------------------------------------|-----------|----------|------------|--------|---------------|--|
| Adrénaline                           | énaline + |          | + + +      |        | + + +         |  |
| Noradrénaline                        | +         | -++ +++  |            |        | 0             |  |
|                                      |           | ADRE     | NALINE     | N      | ORADRENALINE  |  |
| Demi-vie plasmatio<br>(min)          | 2-3       |          | 0.6-3      |        |               |  |
| Volume de distribution<br>(l/kg)     |           | ?        |            | ?      |               |  |
| Clairance plasmatique<br>(ml.kg.min) |           | 35-90    |            | 20-100 |               |  |

1mg dans 10 ml. Pas en perfusion, mais TITRATION des effets Bolus initial de 0,5 mg possible, ml par ml qsp le pouls radial perceptible Juste ce qu'il faut : Eviter une vasoconstriction splanchnique

SI disponible : Noradrénaline titrée en IV continue (débuter à 0,01µg/kg/min)

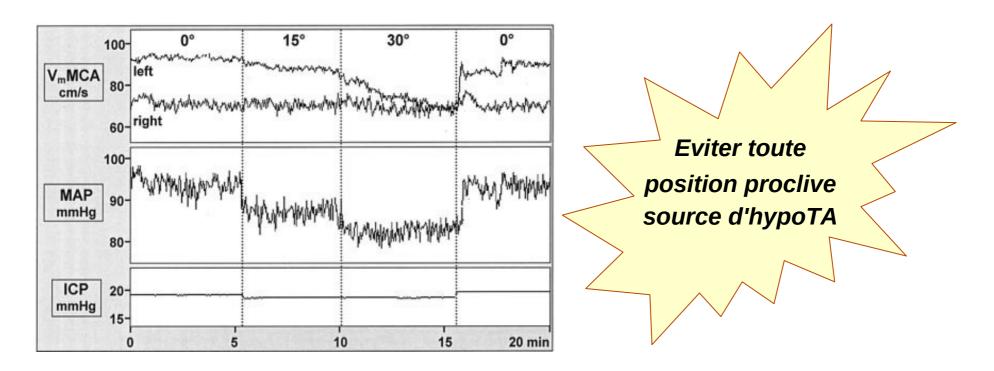
Réduire la PIC par une osmothérapie. *Objectif PIC < 25 mmHg* 

La référence en milieu civil est le mannitol 20% [0,20 à 1 g/kg (soit 1 à 5 ml/kg)]

|                                                        | Mannitol                                                                                  | Sérum salé hypertonique                                       |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Composition                                            | Sucre alcoolique                                                                          | Chlorure de sodium                                            |
| Posologie                                              | 0,25 à 1 g/Kg                                                                             | Très variable, 6 à 18 gr                                      |
| Augmentation de la volémie<br>(30 min après injection) | 111%                                                                                      | 3 à 4 fois le volume administré                               |
| Effet rhéologique                                      | Oui                                                                                       | Oui                                                           |
| Effet diurétique                                       | +++ Diurèse osmotique<br>d'environ 4 à 5 fois le volume<br>perfusé                        | + Diurèse via sécrétion de facteur natriurétique)             |
| Effet hémodynamique                                    | ↓ pression artérielle moyenne<br>si bolus rapide<br>Hypovolémie secondaire à<br>compenser | ↓ pression artérielle moyenne si<br>bolus rapide<br>↑ Volémie |
| Effet cérébral                                         | ↓ Pression intracrânienne                                                                 | ↓ Pression intracrânienne                                     |
| Effet rebond                                           | Possible                                                                                  | Possible en cas d'administration prolongée                    |
| Effets secondaires principaux                          | Hypo/hyperkaliémie<br>Insuffisance rénale aiguë                                           | Surcharge vasculaire<br>Hypokaliémie                          |



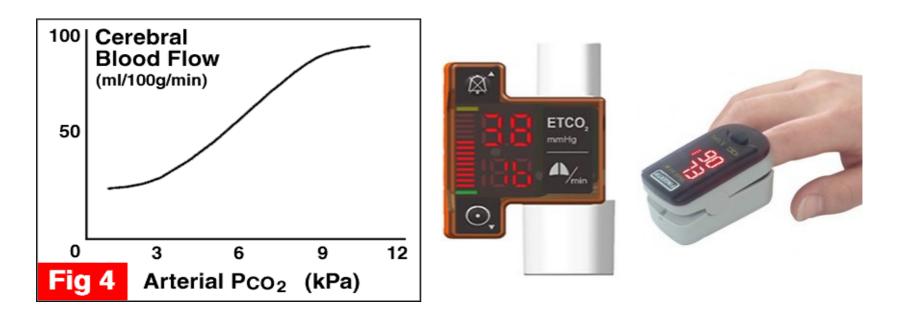
Mannitol ou sérum salé hypertonique ? Geeraerts T et Al. Urgence pratique 2012 : 111, 17-22


#### MAIS:

- Pas présent dans un sac à dos
- Génère une polyurie non gérable dans nos EVASAN
- Risque d'aggraver l'hypovolémie d'un blessé qui saigne

DONC: NaCL 7,5%: 100 ml devant toute anomalie pupillaire ou aggravation de l'état de conscience

Réduire la PIC par une mise en position adaptée. *Objectif PIC < 25 mmHg*Ce qui compte est de maintenir une pression de perfusion cérébrale optimale :


Le blessé: Dos à plat, sans compression jugulaire, tête surélevée dans l'axe du corps

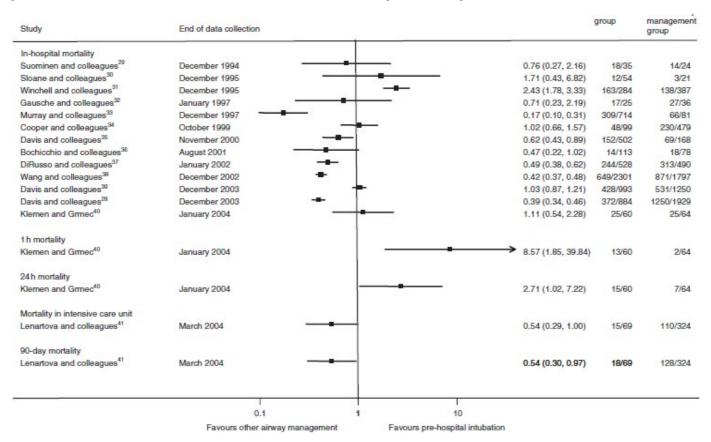


Surélevez la tête pas le tronc. Attention à une minerve mal positionnée, trop serrée.

Réduire la PIC par une ventilation adaptée. *Objectif PIC < 25 mmHg* 

Objectif: Une normoventilation paCO2 = 35 à 40 mmHg et une paO2 > 60 mmHg




HypoCO2 : Ischémie, vasoconstriction HyperCO2 : HTIC, vasodilatation Hypoxie : Ischémie

FR =15, Vt = 500 ml,  $I/E = \frac{1}{2}$ , FiO2= 1, PEP = 0, Pmax = 35 cmH2O

Pas de paCO2 < 35 mmHg dans les 24 1ères heures sans monitorage adapté

Réduire la PIC par une ventilation adaptée. *Objectif PIC < 25 mmHg* 

Remarque : Débats US/UK sur l'intubation préhospitalière des traumatisés crâniens



+++ Recommandation GCS <8

Laryngoscopie, fasciculations et HTIC

**Danger Hyperventilation** 

Réduire la PIC et préserver la PA par une sédation adaptée

|                 | PIC            | PPC (60-70mmHg) |
|-----------------|----------------|-----------------|
| Morphinique     | = ou augmentée | diminuée        |
| Benzodiazepines | = ou augmentée | diminuée        |
| Propofol        | = ou diminuée  | diminuée        |
| Barbituriques   | diminuée       | diminuée        |
| Etomidate       | diminuée       | =               |
| Gamma-OH        | diminuée       | =               |
| Ketamine        | = ou diminuée  | =               |
| Curares         | = ou diminuée  | =               |

Midazolam (0,1 mg/kg/h)



Kétamine (1mg/kg/h)



Sufentanil (0,2 µg/kg/h)



Gamma OH (50mg/kg)



Propofol



Thiopental



**Intubation séquence rapide** 

Pas de toux

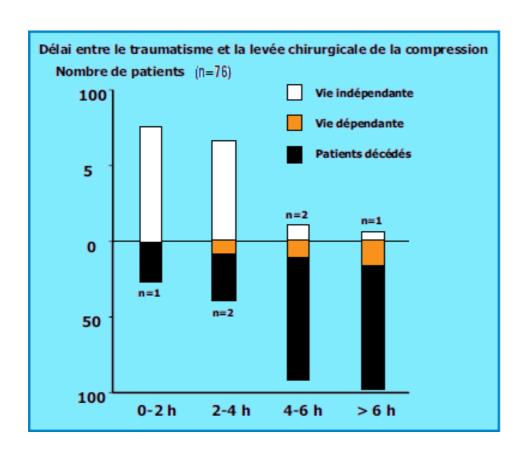
Pas de convulsions

N'oubliez pas la lidocaïne 1,5 mg/kg 2 min avant l'ISR pour réduire la poussée d'HTIC liée à la laryngoscopie

Prophylaxie des convulsions si TBI sévère : Le mieux, Levetiracetam (Keppra) 1500mg IV puis 1000mg IVX2/j

#### Réduire la PIC par une hypothermie ?

| Study<br>or sub-category                                | Hypothermia<br>n/N                             | Control<br>n/N | RR (random)<br>95% CI            | RR (random)<br>95% CI |
|---------------------------------------------------------|------------------------------------------------|----------------|----------------------------------|-----------------------|
| Aibiki, 2000                                            | 1/15                                           | 3/11           |                                  | 0.24 [0.03, 2.05]     |
| Clifton, 1993                                           | 8/24                                           | 8/22           |                                  | 0.92 [0.42, 2.02]     |
| Clifton, 2001                                           | 53/190                                         | 48/178         | +                                | 1.03 [0.74, 1.44]     |
| Jiang, 2000                                             | 11/43                                          | 20/44          |                                  | 0.56 [0.31, 1.03]     |
| Marion, 1997                                            | 9/39                                           | 10/42          | -                                | 0.97 [0.44, 2.13]     |
| Qiu, 2005                                               | 11/43                                          | 22/43          |                                  | 0.50 [0.28, 0.90]     |
| Total (95% CI)                                          | 354                                            | 340            |                                  | 0.76 [0.55, 1.05]     |
| Total events: 93 (Hypothe                               | ermia), 111 (Control)                          |                | ٦                                |                       |
|                                                         | $hi^2 = 7.58$ , $df = 5$ (P = 0.18), $I^2 = 3$ | 34.0%          |                                  |                       |
| 7314 STORE (SOCIONALIS) (SEE COSTO SOCIONALIS (1994) 73 | 4000000000 Villaconer                          |                | 0.01 0.1 1 10                    | 100                   |
|                                                         |                                                |                | Favors hypothermia Favors contri | ol                    |


#### La PIC peut être mais le pronostic ?

(c'est de la réa : au moins 3 jours, réchauffement lent)

En pratique NORMOTHERMIE ++++ Prohiber  $\theta > 38^{\circ}$ C

#### Penser MARCHE et Evacuer le blessé

Car le pronostic est liée à la précocité de la décompression chirurgicale

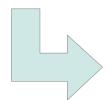


Trou de trépan

Evacuation hématome

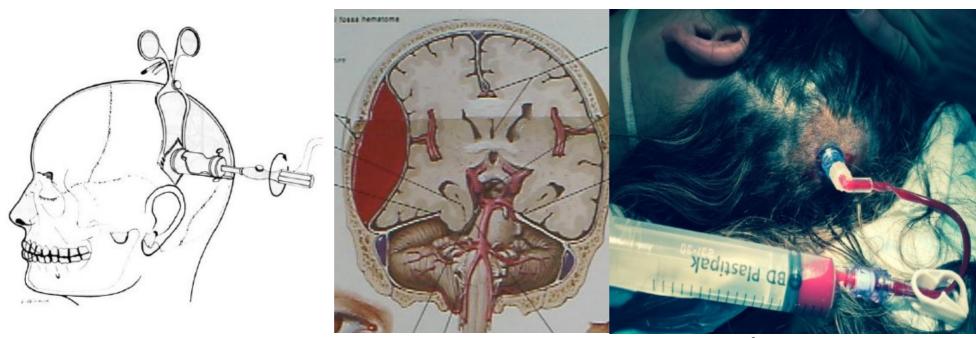
Dérivation

Craniectomie décompressive


Craniectomie décompressive : 25 % de récupération de TC jugés autrefois sans espoir

#### Pour résumer

### Vous devez être actif pour prévenir les ACSOS

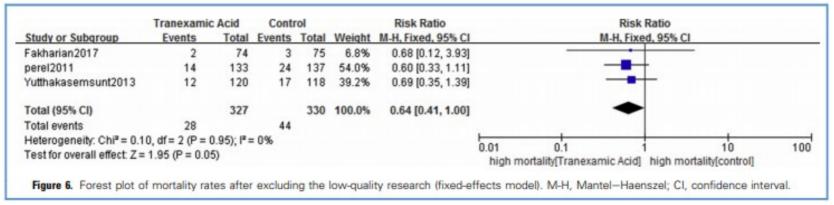

| Agressions secondaires  | Paramètres                     | Seuils     | Durées  |  |
|-------------------------|--------------------------------|------------|---------|--|
| Hypoxémie               | SaO <sub>2</sub>               | ≤ 90%      | 5 min   |  |
|                         | PaO <sub>2</sub>               | ≤ 60 mmHg  | 5 min   |  |
| Hypotension artérielle  | Pression artérielle systolique | ≤ 90 mmHg  | 5 min   |  |
|                         | Pression artérielle moyenne    | ≤ 70 mmHg  | 5 min   |  |
| Hypertension artérielle | Pression artérielle systolique | ≥ 160 mmHg | 5 min   |  |
|                         | Pression artérielle moyenne    | ≥ 110 mmHg | 5 min   |  |
| Hypercapnie             | PaCO <sub>2</sub>              | 45 mmHg    | 5 min   |  |
| Hypocapnie              | PaCO <sub>2</sub>              | ≤ 22 mmHg  | 5 min   |  |
| Fièvre                  | Température                    | ≥ 38 °C    | 1 heure |  |

En fait plus compliqué que cela : Anémie, Contrôle glycémique, ....

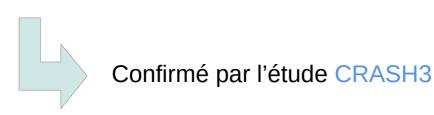


Importance de ces mesures en cas de soins prolongés

En cas d'isolement extrême : Savoir réaliser un trou de trépan




Du côté de la mydriase


Esotérique, mais?

Réduire le saignement lié à la lésion et la coagulopahie ?

Apport de TXA précoce probablement utile (?)



Effect of tranexamic acid in patients with traumatic brain injury: a systematic review and meta-analysis. Weng S. et Al. World Neurosurg. 2018 Dec 6. pii: S1878-8750(18)32773-6



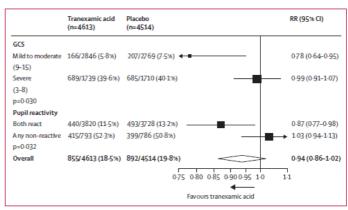
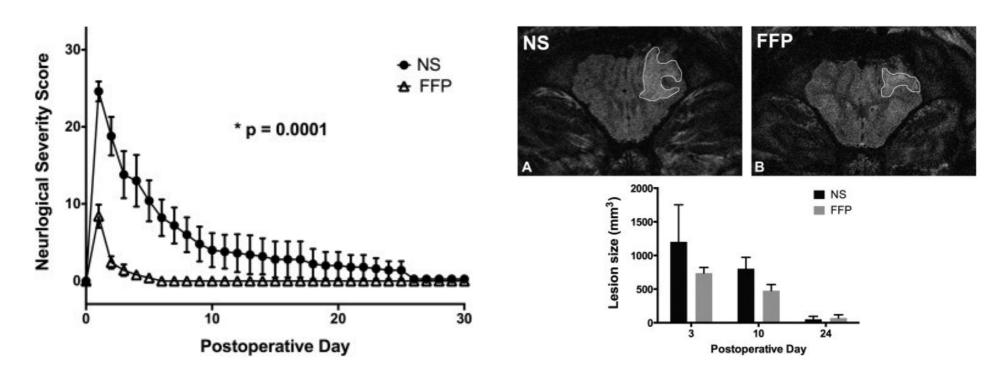
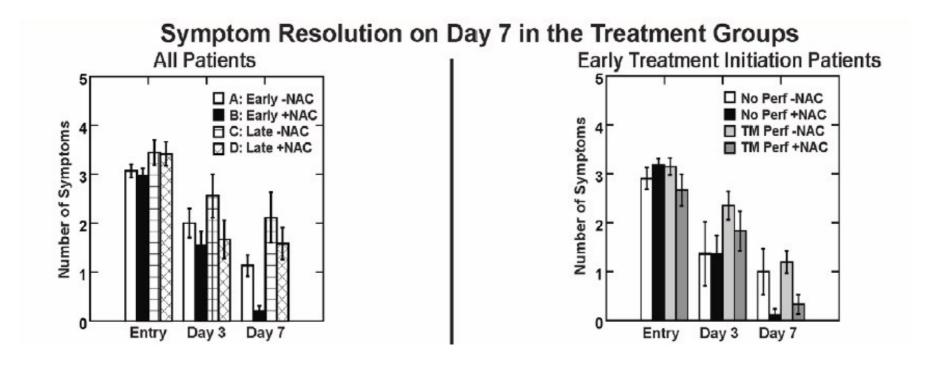



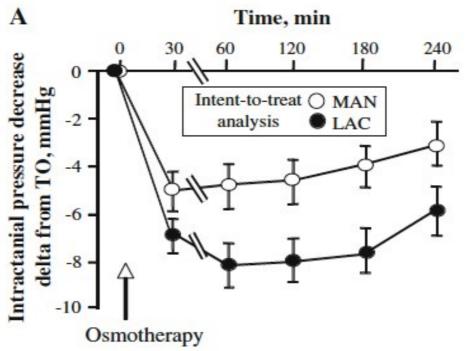

Figure 3: Effect of tranexamic acid on head injury-related death stratified by baseline severity in patients randomised within 3 h of injury

RR=risk ratio. GCS=Glasgow Coma Scale.


Réduit la taille des lésions, limite les micro saignements et améliore la récupération

Et le plasma lyophylisé?

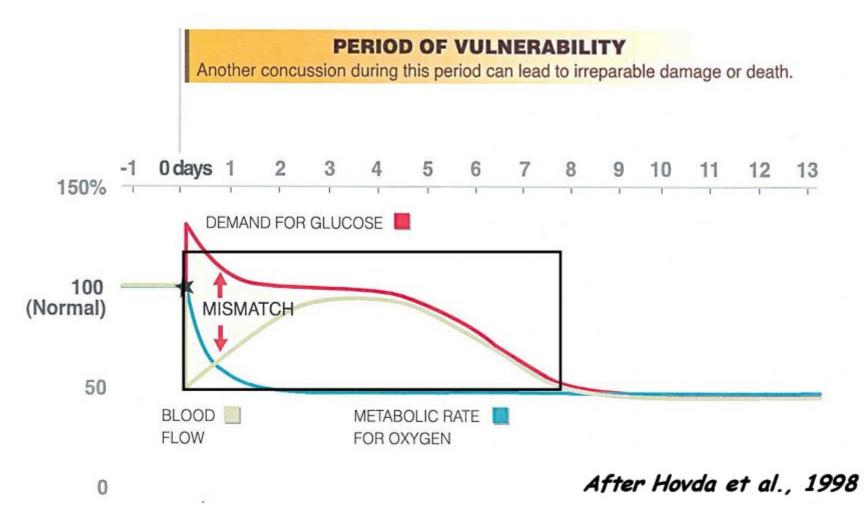



Réduit la taille des lésions, limite les micro saignements et améliore la récupération

Et la N Acétyl cystéine: Moins de séquelles en cas de blast cérébral ? Un intérêt documenté en conditions de combat



4 g per os puis 18-24h après 2X2 g jusqu'à J4 puis 1,5 g X2 jusqu'à J7


Et le lactate, source d'énergie cérébrale pour traiter l'HTIC ?



Ichai C. et AL. Intensive Care Med. 2009 Mar;35(3):471-9.

Une nouvelle approche métabolique

#### Au final une histoire qui va durer



#### Une manière organisée d'agir conduite par tous pour une restitution en tout contexte

S Stop the burning process

A Assess the scene

Free of danger

**Evaluate for ABC** 

Répliquer par les armes

Analyser ce qu'il se passe

Extraire le(s) blessé(s) pour des soins sans danger Evaluer le blessé par la méthode START

#### Regrouper, établir un périmètre de sécurité, gérer les armes, rendre compte

Massive bleeding control

A Airway

**Respiration** 

C Choc

**H** Head/Hypothermia

**Evacuate** 

Garrot, compression, packing, hémostatiques, Stab. pelvienne

Position, subluxation, guédel, Crico-thyroïdotomie, Intubation

Position, oxygène, exsufflation, intubation, ventilation

Abord vasculaire, remplissage, adrénaline, transfusion

Conscience, protection des VAS, oedème cérébral, hypothermie

9 line CASEVAC/MEDEVAC request

R

Réévaluer



Yeux/ORL



Les 4 As: Analgésie, Antifibrinolyse, Anti Emetique, Antibiotique

Ν

# Pour accéder au Website de médecine tactique

Version pdf (actualisé annuellement)



Version sonorisée (nécessite une ouverture de compte)



Gestion d'Enseignements à Distance et d'Informations du Service de Santé des Armées