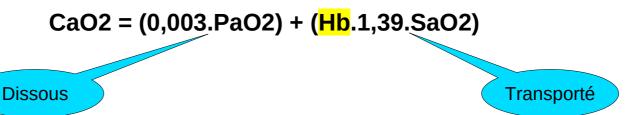
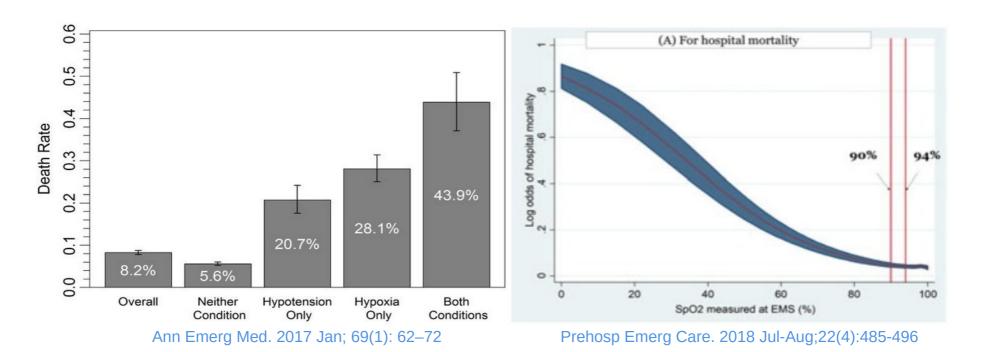
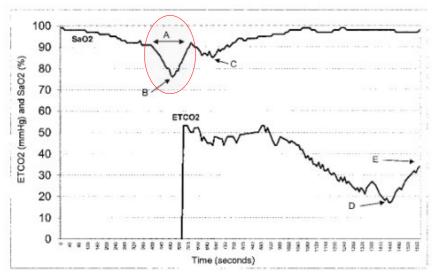
Manuel de prise en charge d'un blessé de guerre - Ch06 - CITERA69 Médecine Tactique V 2026


Rétablissement de l'oxygénation

Pourquoi?


Toutes les causes de traumatisme

Par détresse respiratoire ou choc hypovolémique hémorragique

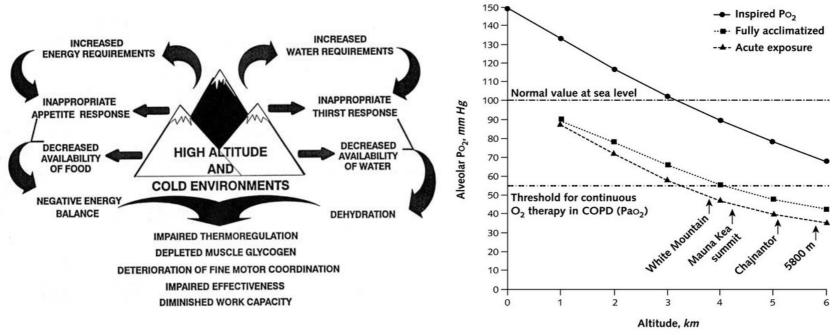


De plus l'hypoxie est un facteur aggravant du traumatisme

Notamment en cas d'atteinte cérébrale, Surtout si existe une hypoTA

Notamment lors d'une induction en séquence rapide

Près de 10 % de désaturation, y compris en des mains expertes


Table 4

Characteristics of patients experiencing desaturation during pre-hospital rapid sequence intubation grouped by their diagnosis (values expressed as percent and median and IQR and mean +/- SD).

	Overall	Trauma	Medical	
Episode of desaturation (%)	20 (13.3%)	15 (12.8%)	5 (15.2%)	n.s.
ΔSpO ₂ desaturation (%) (mean +/– SD)	24 ± 10	22 ± 10	28 ± 7	n.s.
Duration of desaturation (sec.)	50 (30-92)	40 (28–60)	116 (90–184)	< 0.05
$SpO_2 \ge 90\%$ at RSI-start	13 (65.0%)	10 (66.6%)	3 (60.0%)	n.s.
SpO ₂ < 90% at RSI-end	18 (90.0%)	13 (86.7%)	5 (100.0%)	n.s.
SpO ₂ < 90% at RSI-end +2 min.	2 (10.0%)	0 (0.0%)	2 (40.0%)	n.s.
$SpO_2 \ge 96\%$ upon hospital admission	150 (9.4%)	117 (100.0%)	33 (100.0%)	n.s.

IQR, interquartile range.

Et particulièrement lors de combats en altitude, car la pression barométrique ↓

The Physiologic Basis of High-Altitude Diseases - West JB Ann Intern Med. 2004;141:789-800.

Altitude, froid, dénivelés rapides : Être préparé pour intervenir au dessus de 2500 m

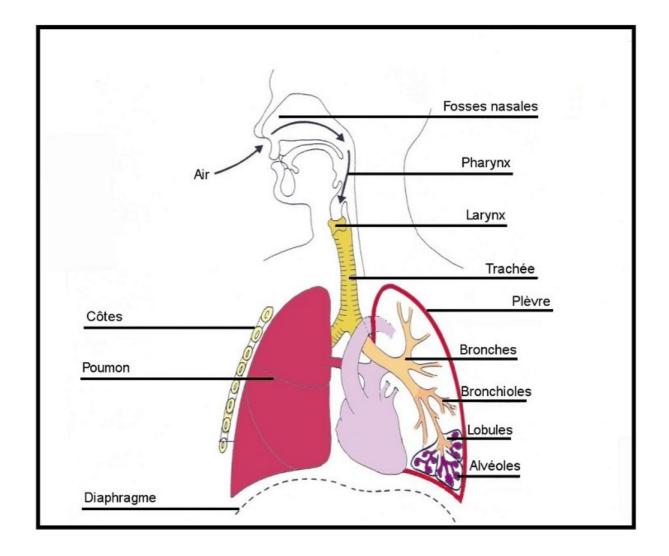
Les effets des explosions en milieu confiné ou par armes thermobariques

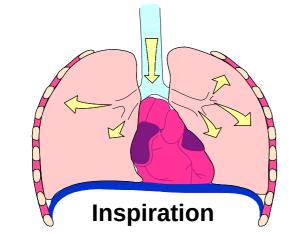
Surpression pulmonaire

Intoxication fumées d'incendie, Poussières, CO, Acide Cyanhydrique

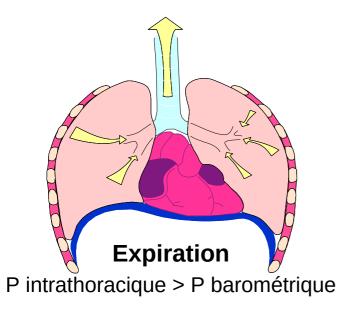
La rareté de l'oxygène disponible

Dans votre sac à dos ? Plutôt avec vos moyens d'EVASAN

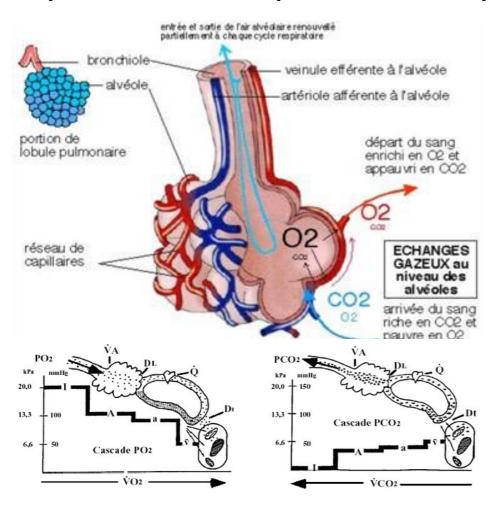

Ressource mal utilisée?


« In our dataset, more than 1 in 5 casualties overall had documented hyperoxia on ABG measurement, 1 in 3 intubated casualties, and almost 1 in 2 TBI casualties. With limited oxygen supplies in theater and logistical challenges with oxygen resupply, efforts to avoid unnecessary oxygen supplementation may have material impact on preserving this scarce resource and avoid potential detrimental clinical effects from supraphysiologic oxygen concentrations »

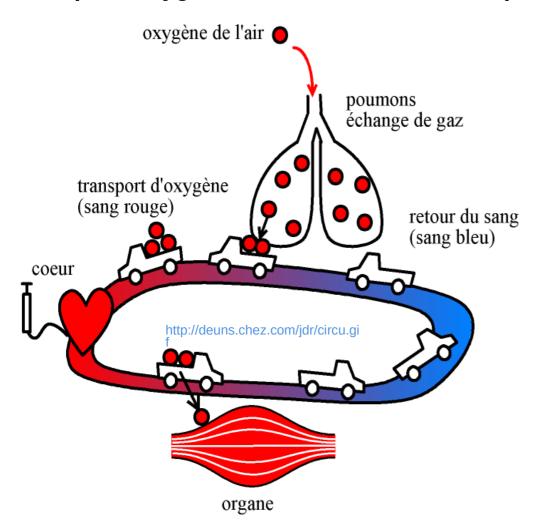
Quelques données d'anatomie et de physiologie


Appliquées aux conditions de combat

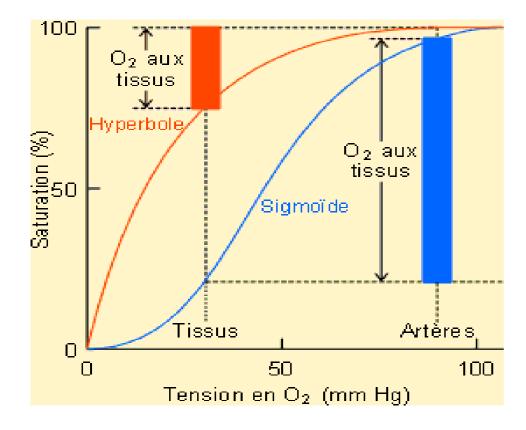
Anatomie de l'appareil respiratoire


P intrathoracique < P barométrique

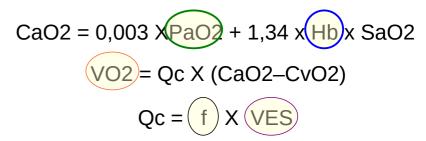
Une ventilation n'est adaptée que si:


- 1. Les voies aériennes sont libres
- 2. La stabilité costale est assurée
- 3. La vacuité pleurale est assurée
- 4. Le soufflet diaphragmatique est fonctionnel
- 5. La commande ventilatoire est normale

Ce qui se fait au niveau pulmonaire est important : La ventilation alvéolaire


Oxygéner Éliminer le gaz carbonique

Mais pour oxygéner les tissus, d'autres étapes sont toutes aussi importantes


Le transport vers les cellules
L'extraction par les cellules
L'utilisation par les cellules
L'élimination des métabolites

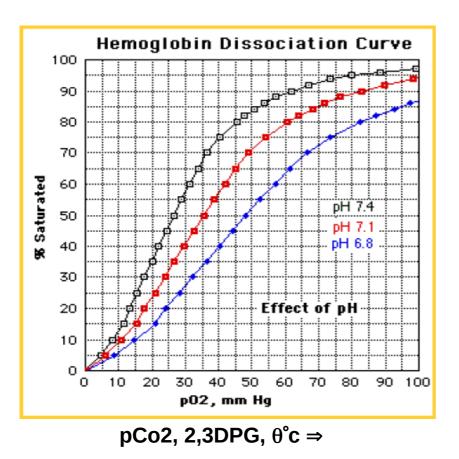
Oxygènation et hémoglobine

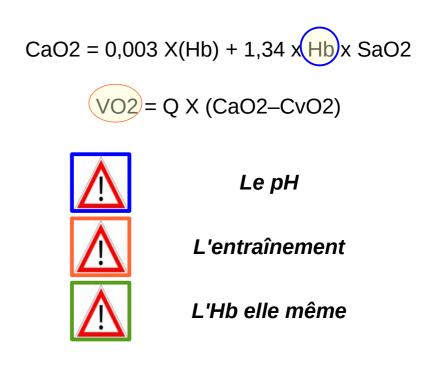
La forme sigmoïde de cette courbe favorise le relargage de l'O2 au niveau de la micro-circulation

Altitude

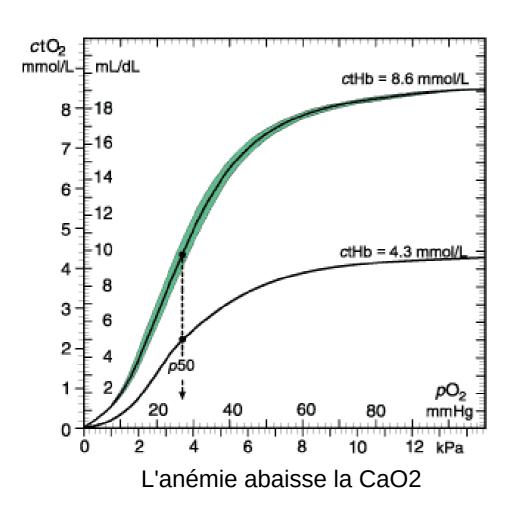
Anémie

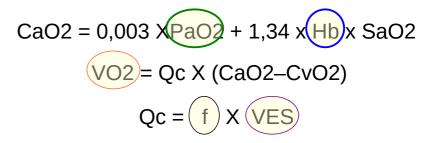
Entraînement




Hypovolémie

Baroréflexe


Oxygènation et Acidose



Tout ce qui modifie la courbe de dissociation a un impact sur l'oxygénation tissulaire

Oxygénation et anémie

Altitude

Anémie

Entraînement

Hypovolémie

Baroréflexe

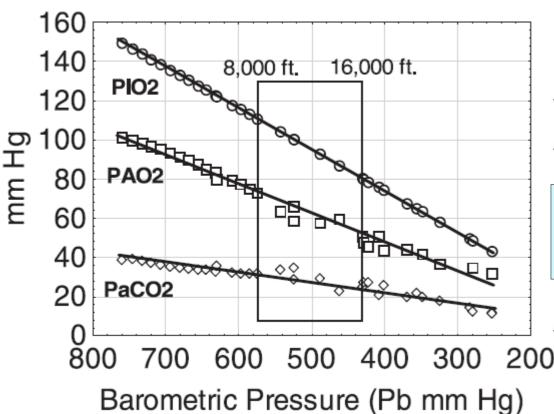
Oxygénation et anémie

Un retentissement majeur sur l'oxygénation

CaO2 = 0,003 XPaO2 + 1,34 x + 1,34

Moins d'oxygène dans le sang

Altitude : 3650 mètres	FiO2	SaO2	Hb (g/dl)	Q'1/min	DO2 ml/min	PVO2	SvO2
Avant hémorragie (H)	0,21	88%	15	6	1 111	36	66%
Après H + remplissage	0,21	85%	7	5	421	13	13%
Après H + O2 masque facial	0,7	99%	7	5	519	21	32%
Après H + O2 par intubation	1	99%	7	5	540	22	3%


Choc hémorragique en altitude avec VO2 = 250 mL O2/min et 350 mL/min O2/min avant trauma – Objectif pouls palpable

Pour améliorer le transport : Apporter de l'oxygène ou / et transfuser

Oxygénation et altitude

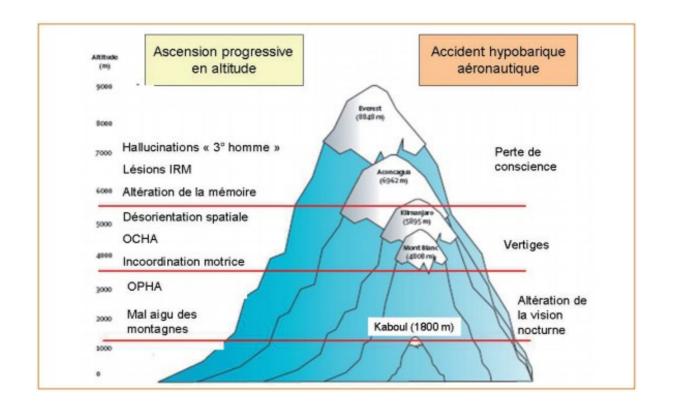
Hypoxie hypobarique

C'est la pression barométrique qui baisse et pas la FiO2

PIO2 = (Pb)- PH2O) X FIO2	
PAO2 = PIO2 - (PaCO2/0,8))

Altitude		Barometric Pressure	PIO ₂	PaO ₂	PaCO ₂	
Feet	Meters	(mm Hg)	(mm Hg)	(mm Hg)	(mm Hg)	
Sea level		760	150	96	40	
5,000	1,520	635	123	74	36	
8,000	2,440	574	111	65	34	
10,000	3,050	534	102	59	32	
12,000	3,660	495	94	53	30	
14,000	4,270	460	87	49	28	
16,000	4,880	425	79	45	26	
20,000	6,100	365	67	40	22	
26,000	7,930	287	50	33	14	
29,028	8,848	253	43	30	11	

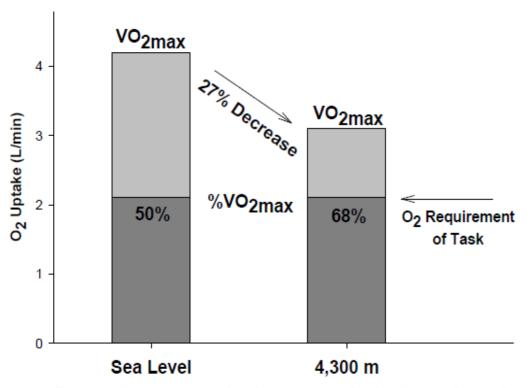
<u>^</u>

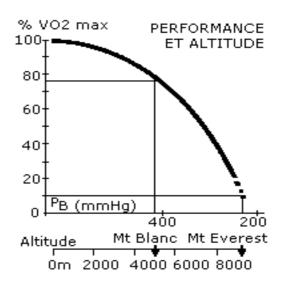

Acclimatation

Altitude de combat afghanistan : 2500 m

Oxygénation et altitude

Hypoxie hypobarique

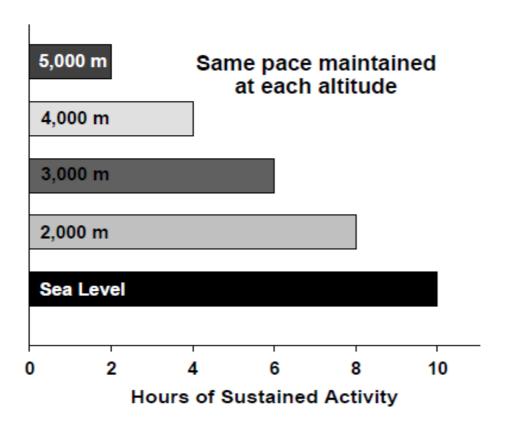

C'est la pression barométrique qui baisse et pas la FiO2



Altitude de combat afghanistan : 2500 m

Oxygénation et altitude

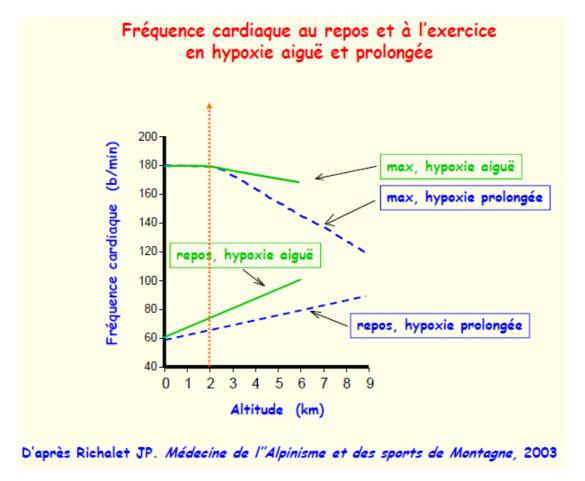
Une capacité à l'effort moindre


Increase in percent maximal oxygen uptake despite no change in task requirement at 4,300 meters

La VO2 Max baisse

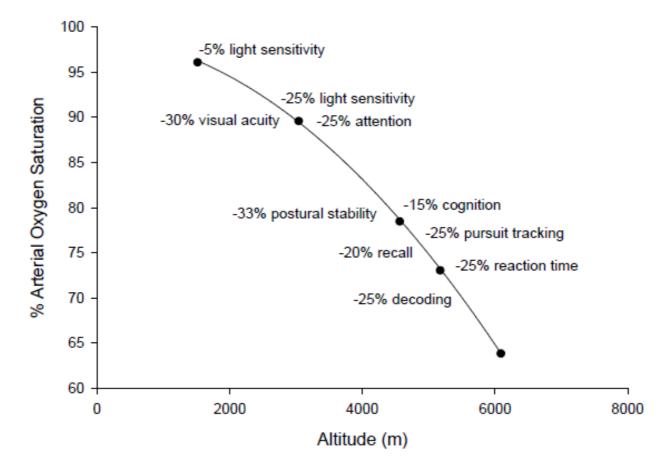
Oxygénation et altitude

Une capacité à l'effort moindre



Le même effort est soutenu moins longtemps en altitude

Effet bétabloquant de l'altitude


Des signes cliniques qui dépendent de l'adaptation préalable

Les effets cardio-respiratoires

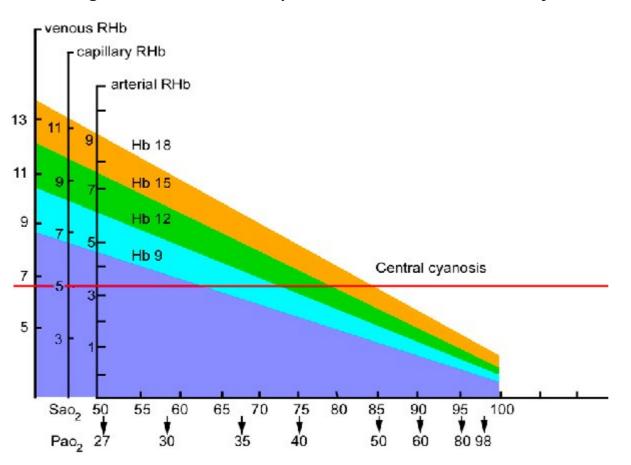
Des signes cliniques qui dépendent de l'adaptation préalable

Les effets neurosensoriels

Des signes cliniques qui dépendent de l'adaptation préalable

Les signes cutanéo-muqueux : La cyanose

Moins de 5 g/dl d'Hb désoxygénée CAPILLAIRE

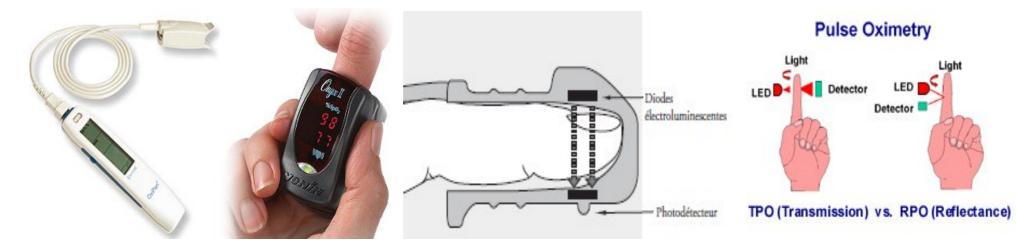


Centrale ou périphérique

Des signes cliniques qui dépendent de l'adaptation préalable

Les signes cutanéo-muqueux :

La cyanose est **TARDIVE**

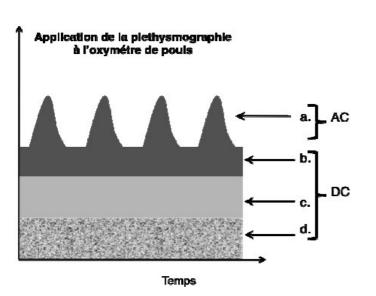


Pour une hémoglobine de 12 g/dl, la cyanose apparaît à des valeurs de saturation artérielle comprises entre 88 et 71%.

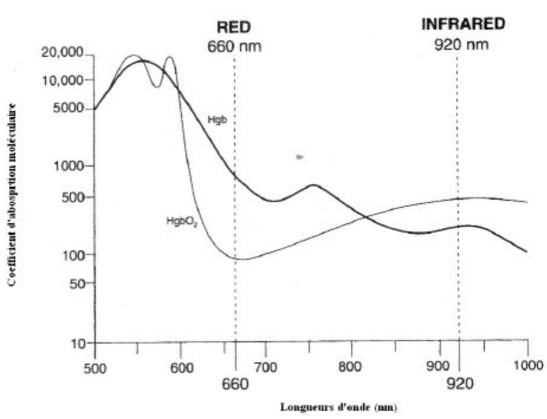
L'anémie masque la cyanose

Le recours à des dispositifs de mesure de l'oxygénation

L'oxymétrie pulsée transcutanée : Principes


Mesurer, sur 2 longueurs d'onde R et IR, l'absorption de la lumière par l'HB

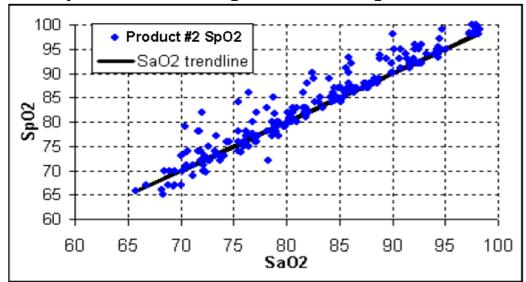
Deux technologies : La transmittance et la réflectance


Mesure de ce qui arrive à la cellule ?

Le recours à des dispositifs de mesure de l'oxygénation

L'oxymétrie pulsée transcutanée : Principes

$$\Phi = \frac{AC_R/DC_R}{AC_{IR}/DC_{IR}}$$



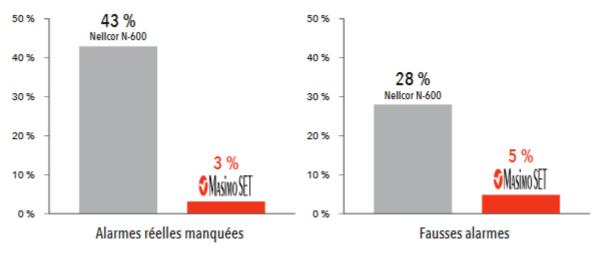
Le recours à des dispositifs de mesure de l'oxygénation

L'oxymétrie pulsée transcutanée : Une approximation de la SaO2

SaO2 = HbO2 / [HbO2 + Hb +COHb + Methb + SfHb + COSfhb]

SpO2 = HbO2 / [Hb + HbO2]

Fiable sauf en cas d'anémie et d'acidose


A total of 1085 paired readings demonstrated only moderate correlation (r= 0.606; P < 0.01) between changes in SpO2 and those in SaO2, and the pulse oximeter tended to overestimate actual changes in SaO2. Anaemia increased the degree of positive bias whereas acidosis reduced it. However, the magnitude of these changes was small.

http://ccforum.com/content/7/4/R67

Le recours à des dispositifs de mesure de l'oxygénation

Mais leur performance dépend de la qualité d'extraction du signal

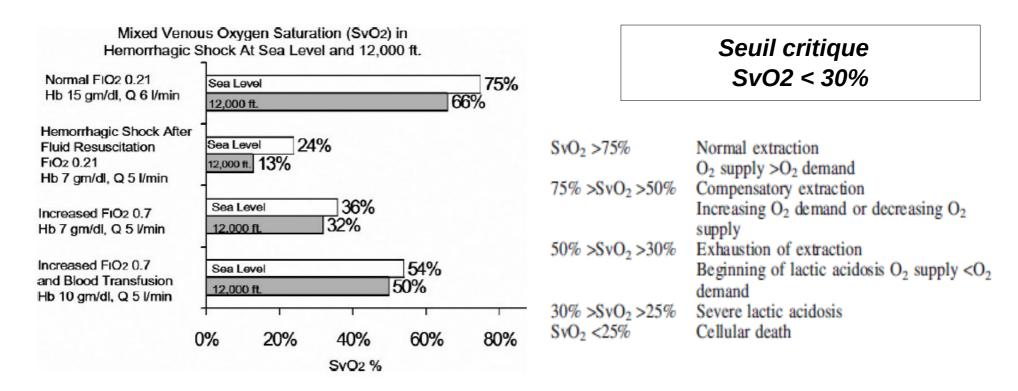
Performance en présence de mouvements et une faible perfusion

Document MASIMO

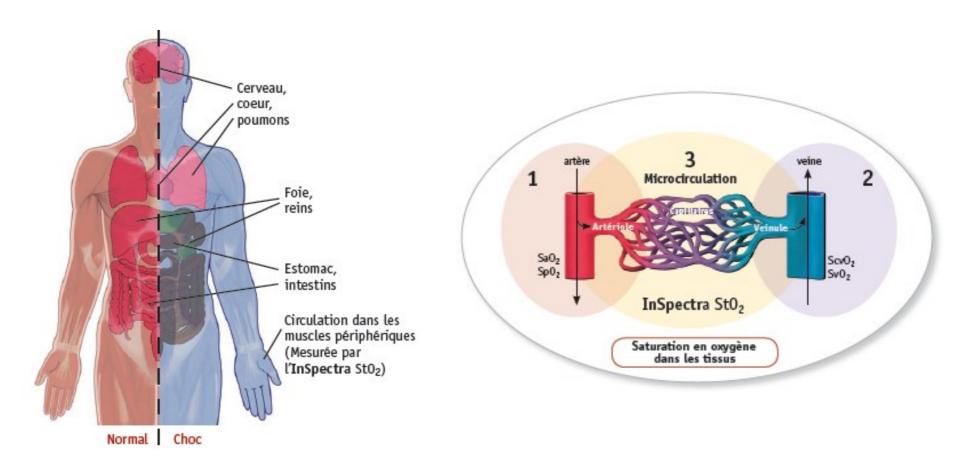
Le recours à des dispositifs de mesure de l'oxygénation

L'oxymétrie pulsée transcutanée : Des limites d'interprétation importantes

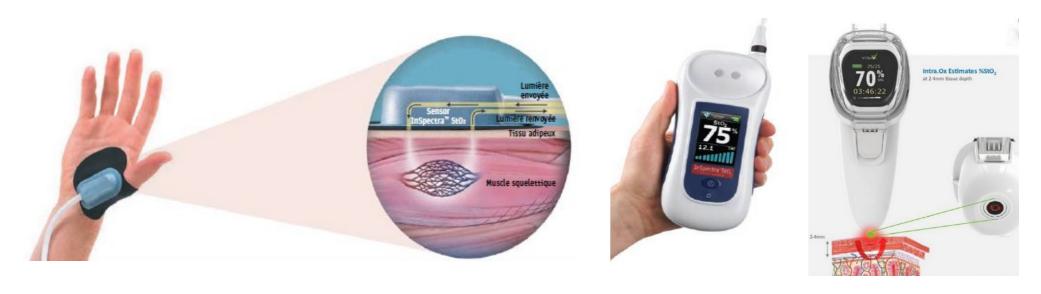
- Un chiffre sans courbe. Nécessité d'un flux pulsatile
- A interpréter en fonction de l'altitude
- Hypothermie
- Vasoconstriction liée au choc
- Anémie
- CO (Explosion en milieu confiné, inhalation de fumées)


A quoi sert la SpO2 si je n'ai pas d'oxygène ?

La SpHb?

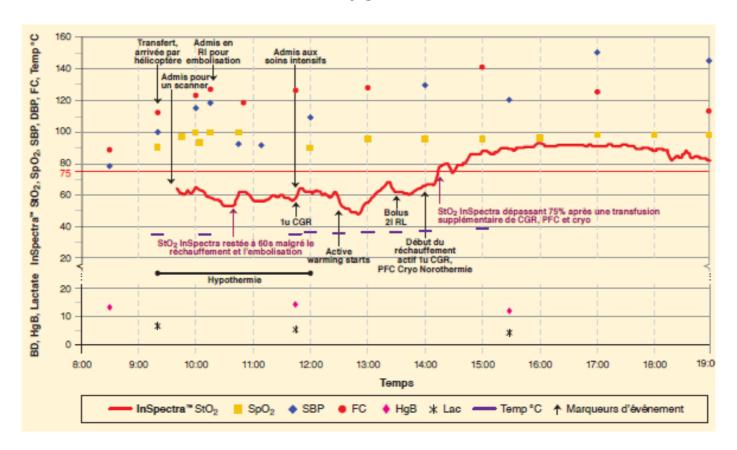

Le recours à des dispositifs de mesure de l'oxygénation

La SVO2: Une idée de l'extraction d'oxygène mais cela est une histoire hospitalière



Sv O2 = Sa O2 - [VO2 / (CO X Hb X 13.8)]

Le recours à des dispositifs de mesure de l'oxygénation



Le recours à des dispositifs de mesure de l'oxygénation

Le recours à des dispositifs de mesure de l'oxygénation

Le recours à des dispositifs de mesure de l'oxygénation

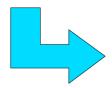
	SaO ₂	SpO ₂	Sv0 ₂	Scv02	InSpectra StO ₂	
Mesure de	La saturation artérielle en 0 ₂	La saturation artérielle en 0 ₂	La saturation en O ₂ du sang veineux mêlé	La saturation veineuse centrale en 0 ₂	La saturation en 02 des tissus	
Mesure du % de saturation en 0 ₂ de l'hémoglobine	Oui	0ui	0ui	Oui	Oui	
Site de mesure	Artères	Artères pulsatiles	Artère pulmonaire	Veine cave supérieure ou inférieure, oreillette droite ¹	Microcirculation périphérique	
Méthode de mesure	Prélèvement de sang artériel, analyseur des gaz du sang	Oxymètre de pouls	Cathéter d'artère pulmonaire Cathéter veineux central		InSpectra™StO2 Systèmes de surveillance de l'oxygénation des tissus	
Utilisation des mesures	Fixation de l'02 dans les poumons	Fixation de l'O ₂ dans les poumons	Indicateur de l'oxygénation globale des tissus	Substitut à la SvO ₂	Statut de la perfusion des tissus	
Ce que cela indique pendant un choc et une réanimation		oulmonaire ou compromises	Modification du et/ou de la co	Réponse immédiate aux modifications précoces du statut de perfusion périphérique		
Nécessite un flux pulsatile	Non	0ui	Non Non		Non	

Reconnaître l'hypoxémie/ hypoxie (?)

Le recours à des dispositifs de mesure de l'oxygénation

La StO2: Une mesure continue de l'oxygénation tissulaire. **Non validé à ce jour ?**

Injury	Initial StO ₂	Resuscitation Maneuver	Post resuscitation StO
Bilateral lower extremity IED	60	2 LR, 2 PRBCs	78
IED blast, right leg, left flank	51	2 LR, I PRBCs	71
GSW left thigh	54	I LR	88
Abdominal compartment syndrome	62	Open abdomen	91
Bilateral lower extremity IED	51	. I LR	76
GSW abdomen	50	I LR	82
GSW right arm	55	0.5 LR (9 y/o)	76
Blast injury	I	CPR ´	1


During the above time period, 161 patients were evaluated at the CSH as a result of traumatic injury and the device was placed on approximately 40 patients. In most patients, StO2 readings of greater than 70% were noted during the initial evaluation. No further information was collected from these patients. In 8 patients, convenience samples of StO2 data were collected along with pertinent physiologic data. In these patients, StO2 levels of below 70% tracked with hypotension, tachycardia, and clinical shock resulted in increases in StO2 after resuscitation maneuver

Les sources d'oxygène

Ce qui LIMITE le recours à l'oxygène

Un blessé non hémorragique non choqué n'a probablement pas besoin d'oxygène

Sauf si c'est un traumatisé crânien

Les sources d'oxygène

L'oxygène comprimé

Les bouteilles du SSA ont un volume de 3 litres. Elles peuvent être gonflées à 300 bars et ont été éprouvées à 450 bars. En pratique elles sont gonflées à 200 bars

Autonomie?

Bouteille de 3 l à 150 bars = 450 litres disponibles Pour un débit de 10 l/min = Autonomie de 45 minutes Moins 10% pour les pertes = 40 min d'autonomie

Ne pas entreposer au soleil A l'abri du feu de l'ennemi Le poids (près de 6 kg) dans le sac à dos ?

Bouteille présence Air liquide Santé

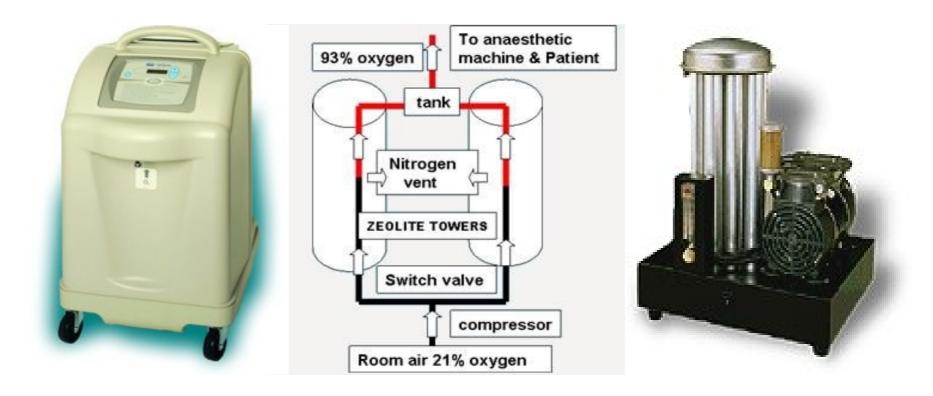
Les sources d'oxygène

L'oxygène comprimé

Bouteille Oxycos

Les bouteilles OXYCOS ont un volume de 1 litre. Elles peuvent être gonflées à 300 bars. Utilisables de -40 à+60°C

Autonomie?

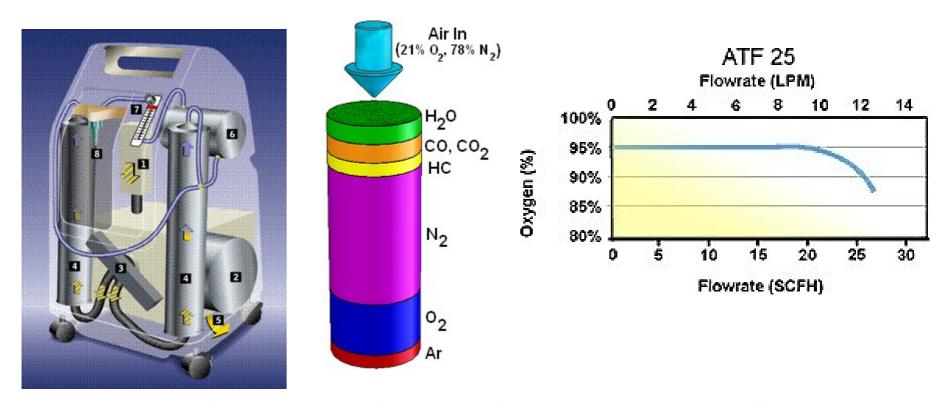

Bouteille de 1 l à 300 bars = 300 litres disponibles Pour un débit de 10 l/min = Autonomie de 25 minutes Moins 10% pour les pertes = 20 min d'autonomie

Ne pas entreposer au soleil A l'abri du feu de l'ennemi Le poids (près de 2,3 kg) dans le sac à dos ?

Autonomie très faible

Les sources d'oxygène

L'oxygène produit sur place


Les concentrateurs d'oxygène portables. Pas de remplissage de bouteille (en principe)

Des performances dépendantes des conditions pression/température ambiante. Une solution individuelle

Les sources d'oxygène

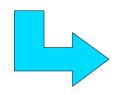
L'oxygène produit sur place

Une performance qui dépend du débit de sortie

L'air est filtré puis comprimé puis dirigé sur un des 2 tamis moléculaires qui retient l'azote pendant que le second se régénère

Les sources d'oxygène

L'oxygène produit sur place

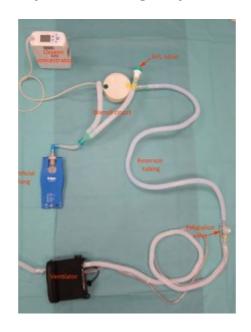


Oxygène chimique

SAROS Systeme

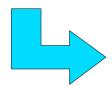
Oxygène liquide

Un blessé non hémorragique non choqué n'a probablement pas besoin d'oxygène


Sauf si c'est un traumatisé crânien

Les sources d'oxygène

L'oxygène exhalé?


La ré-inhalation de l'oxygène expiré : Usage quotidien en anesthésie, Plongée

Stocker l'air expiré dans un tube, un ballon et le réutiliser

Gestion du CO2 ?

Pas d'utilisation clinique véritable

Les modes de dispensation

Avoir recours aux ballons réservoirs pour avoir une FiO2 élevée

Le mode de dispensation: Une FiO2 très variable

Inhalation d'oxygène			
	Débit (l/mn)	FiO2	
Sonde nasale	1 à 6	0,24 à 0,26 (24 à 26 %)	
Lunettes à oxygène	1 à 6	0,22 à 0,24 (22 à 24 %)	
Masque simple	8 à 10	0,4 à 0,6 (40 à 60 %)	
Masque haute concentration	8 à 10	0,8 à 1 (80 à 100 %)	
Ballon autopremplisseur			
sans réservoir	8 à 10	0,4 à 0,6 (40 à 60 %)	
Ballon autopremplisseur avec réservoir	10 à 15	0,9 à 1 (90 à 100 %)	

Le mode de dispensation: Oxygénation apnéique, surtout pour l'induction

15 I/min O2 pur sans ventiler

- par masque/ballon sans ventiler
- +/-valve de PEP si SpO2<90 %

Logistique?

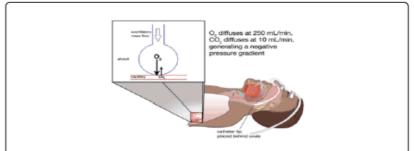
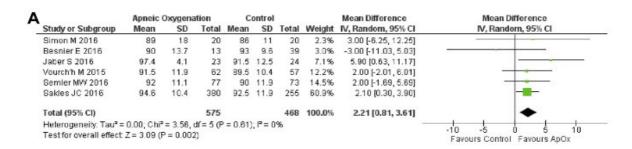
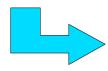



Figure 1: Mechanics of Apneic Oxygenation. Pressure difference between oxygen (O_2) diffusion from the alveoli and carbon dioxide (CO_2) excretion from the capillary generates a negative pressure gradient, resulting in aventilatory mass flow (AVMF) of gases into the lungs [5]. Insufflation of O_2 into the pharynx via nasopharyngeal catheter allows for AVMF of O_2 into the lungs. Image reprinted from AANA Journal, 2016 [1].

Effectiveness of Apneic Oxygenation During Intubation

Oliveira

Méta-analyses en faveur mais encore discuté (ENDAO et FELLOW Trial).


Alors quand administrer de l'oxygène?

Dès que vous le pouvez, autant que vous le pouvez QSP SpO2 >92%(4 altitude) SI :

- SpO2 < 90% à + de 3000 m, < 85% à + 3600 m, <80% à + de 4200 m
- Les traumatismes fermés ou pénétrants thoraciques
- Obstructions des voies aériennes
- Le traumatisé crânien
- Hémorragiques sans pouls radial perceptible
- Induction en séquence rapide (oxygénation apnéique)

Masque standard : début à 10l/min Masque HC : début à 15l/min

Si un débit de 5l/Min \neq > SpO2> 92 %, alors évacuation urgente nécessaire

L'oxymètre: Un outil de triage dont il faut connaître les limites!

Apprendre et s'entraîner : Pour appliquer tous la même méthode !

S Stop the burning process

A Assess the scene

Free of danger

Evaluate for ABC

Répliquer par les armes

Analyser ce qu'il se passe

Extraire le(s) blessé(s) pour des soins sans danger

Evaluer le blessé par la méthode START

Regrouper, établir un périmètre de sécurité, gérer les armes, rendre compte

Massive bleeding control

Airway

Respiration

C Choc

H Head/Hypothermia

E Evacuate

Garrot, compression, packing, hémostatiques, Stab. pelvienne

Position, subluxation, guédel, Crico-thyroïdotomie, Intubation

Position, oxygène, exsufflation, intubation, ventilation

Abord vasculaire, remplissage, adrénaline, transfusion

Conscience, protection des VAS, oedème cérébral, hypothermie

9 line CASEVAC/MEDEVAC request

R Réévaluer

Yeux/ORL

Α

Les 4 As: Analgésie, Antifibrinolyse, Anti Emetique, Antibiotique

Pour accéder au Website de médecine tactique

Version pdf (actualisé annuellement)

Version sonorisée (nécessite une ouverture de compte)

Gestion d'Enseignements à Distance et d'Informations du Service de Santé des Armées